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Tutorial Outline

1. Introduction & Motivations 
2. Homogenous Graph Representation Learning
3. Heterogeneous Graph Representation Learning
4. Break
5. Graph Neural Networks
6. Graph-based Representations for Recommender Systems
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Intro and Motivation
Aria Haghighi
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Recommender Systems
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Technical Definition
◎ Given candidate items (i), rank items by 

relevance for a given user uʼs preferences 
◎ CTR model: Relevance is probability of 

“engagement” (click, watch, follow, like, 
etc.)

Caveats

◎ Other formulations and variations 
exist (e.g, LTV, non-personalized, etc.)

◎ Production systems have many more 
components and rules …..



Recommender Systems

Many Applications For Different “items”
◎ Ads ranking  [Ads]
◎ Account recommendations for social networks  

[Suggested User]
◎ Content recommendation for streaming 

services (e.g, Netflix, Disney+, etc.) [Videos]
Importance
◎ Recommender systems are typically the ML 

models closest  to business objectives  (e.g, Ads 
revenue, growing social graph, watch time)



Approaches To Recommender Systems

Collaborative Filtering (CF)
Leverage (user, item) 
engagement behavior
● Matrix factorization
● Predictive models (i.e, 

DLRM)

3 2

1 0

Content-Based
Item-item similarity. Useful 
when few engagements
● Vector space document 

model
● Transformer-based 

representations of items 
(E.g, BERT or CLIP) ◎ Production systems are usually mixture of 

both approaches
◎ This tutorial focused on collaborative 

filtering, but some content-based extensions



Recommender System Challenges

Sparsity and Cold-Start 
◎ CF works reasonably well when there is 

(user, item) density
◎ Cold-start: When user or item has 

little-to-no past engagements to power CF. 
a. Prevalent for sparse engagement 

targets (e.g, performance ad actions 
like e-commerce purchases)

◎ This tutorial: Pre-trained graph 
embeddings  can address cold-start and 
sparse recommendation problems



Tutorial In A Nutshell

● Build graph of interactions between users, items, and other domain 
entities (e.g, ads, advertisers, content tags, etc.) 

● Embed all graph entities

Ad1

[-0.13, 0.57, … 0.69]

[-0.44, 0.29, … -0.53]

[0.92, -0.21, … -0.65]

[0.29, -0.11, … -0.41]



Tutorial In A Nutshell

● These pre-trained entity embeddings can be used for many different 
tasks involving business entities
○ Entity classification (e.g, account classification)
○ Recommendation candidate retrieval
○ Inputs to recommendations ranking models

[-0.13, 0.57, … 0.69]

Actor or 
Musician?

Classification

[-0.13, 0.57, … 0.69]

Retrieval Ranking

[-0.13, 0.57, … 0.69]

0.25, 0.91, … -0.49]

P(engage |            ,                    )



Homogenous Graph 
Representation
Aria Haghighi
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Homogeneous Graph Representations

12

Homogeneous Graphs
◎ Single node type and single edge type
◎ Twitter 

a. users follow other users
Running Application Example
◎ Nodes represent users and (single) edge 

type for user following relation
◎ Account recommendation: What account 

should a user follow?

homogeneous

Future sections will generalize to 
heterogeneous graphs (multiple edge 
types)



Homogeneous Graph Representations
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Node Embeddings
◎ Represent each graph node u by a vector, 

or embedding, f(u) in  ℝn

◎ Learn f so that “similar” nodes (u, v)  map 
to vectors f(u) and f(v) close together

u

v

f(u)

f(v)

ℝn



Homogeneous Graph Representations
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Why bother with embeddings?
◎ Translate complex relational 

data into representation more 
amenable for Deep ML models

◎ Querying for “similarity” is 
more efficient leveraging 
approximate nearest neighbor 
(ANN) algorithms

Ranking

[-0.13, 0.57, … 0.69]

0.25, 0.91, … -0.49]

P(engage |            ,                    )

[-0.13, 0.57, … 0.69]

Retrieval



Random Walk Approaches
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Defining Objective
◎ Very similar to word2vec
◎ Given nodes “similar” to node u, denoted S(u), assign node embedding 

to maximize probability of this “observed” data



Random Walk Approaches
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Two Modeling Choices
◎ How do we choose “similar” nodes S(u)?

a. Determines kind of similarity captured by embeddings 
◎ How to avoid computing denominator of P(v | u)?



Random Walk Approaches
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DeepWalk  (KDD ʻ14, Perrozi et. al.)

◎ Similar Nodes S(u):  Sample fixed-length random walks from 
each node. S(u) are nodes in a window around u weighed by 
window co-occurrence in sampled walks 

u

vs t

a
b v u t

t u v

u t

S(u)= {
v (2), t  (3), b (1)

}

[Citation]

b

https://arxiv.org/abs/1403.6652?source=post_page---------------------------
https://arxiv.org/abs/1403.6652?source=post_page


Random Walk Approaches
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DeepWalk  (KDD ʻ14, Perrozi et. al.)

◎ Model P(v | u) using hierarchical softmax
◎ Create binary tree, where leaves are nodes V.  

a. Each binary branch has a probability of going left (or 
right) given input embedding, f(u). 

b. P(v | u) is product of binary choices in path to v

b t u

n0

s

n1 n2

Sigmoid

https://arxiv.org/abs/1403.6652?source=post_page---------------------------


Random Walk Approaches
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Recap of DeepWalk  (KDD ʻ14, Perrozi et. al.)

◎ Learn embeddings of dimension d for each node in V
a. This entails d |V | parameters to learn (e.g, embedding table)

◎ Sample short random walks for each node, use context window 
frequency for similarity multiset S(u) 

◎ Hierarchical-softmax to model P(v|u) as sequence of binary decisions 
conditioned on embedding of u
a. Can use arbitrary coding mechanism, but Huffman encoding used 

originally (what benefit?)
b. This adds d (|V|-1) parameters (why?)

https://arxiv.org/abs/1403.6652?source=post_page---------------------------


Random Walk Approaches
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node2vec  (KDD ʻ16, Grover & Leskovec)

◎ Similar Nodes S(u):  Similar to DeepWalk, but richer parametrization 
of random walks to allow flexibility

◎ Breadth-first search (BFS) and Depth-First search (DFS) yield a 
microscopic (local) and macroscopic (global) view of the graph 
respectively

[Figure from node2vec paper]

https://arxiv.org/abs/1607.00653?context=cs
https://arxiv.org/abs/1403.6652?source=post_page---------------------------
https://arxiv.org/abs/1403.6652?source=post_page


Random Walk Approaches
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node2vec  (KDD ʻ16, Grover & Leskovec)

◎ Biased Random Walk: Introduce hyper-parameters p and q which will allow you 
to interpolate between a more BFS vs DFS-like random walk

◎ Imagine we just traversed (s, u) edge in our random walk. Compute 2nd order 
transition probabilities P(t | s, u)

https://arxiv.org/abs/1607.00653?context=cs
https://arxiv.org/abs/1403.6652?source=post_page---------------------------


Random Walk Approaches
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node2vec  (KDD ʻ16, Grover & Leskovec)

◎ Small  p (large p-1) is more BFS-like 
since encourage walk to stay close 
to start

◎ Small  q (large q-1) is more DFS-like 
since encourage walk to wander 
further away

◎ Recover DeepWalk sampling for 
p=q=1

https://arxiv.org/abs/1607.00653?context=cs
https://arxiv.org/abs/1403.6652?source=post_page---------------------------


Random Walk Approaches
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node2vec  (KDD ʻ16, Grover & Leskovec)

◎ SkipGram Objective
a. Negative Sampling: Approximate denominator by sampling from 

distribution,  D(u) ,  over “negative” contexts for node u
b. Noise Contrastive Estimation (NCE): optimize probability of true 

vs false “negative samples”

https://arxiv.org/abs/1607.00653?context=cs
https://arxiv.org/abs/1403.6652?source=post_page---------------------------


Random Walk Approaches

24

Recap

◎ Embed graph nodes by preserving pairwise node similarity, where node 
similarity is defined by co-occurence of nodes in a random walk

◎ DeepWalk samples short random walks uniformly, but node2vec has 
hyper-parameters to encourage walks to interpolate between DFS and 
BFS (to capture macro- and micro- concepts of similarity)

◎ For the user following graph, this yields user embeddings capturing 
similar follow behavior
a. Similar Accounts: Retrieve nearest neighbors of a given userʼs 

embedding
b. Account Classification: Build a model with user embeddings as 

input



Higher-Order Methods
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◎ Instead of obtaining “similar” nodes via random walk sampling, can we 
directly model graph properties?

◎ Graph Proximity
a. First-Order (L1): pairwise proximity between two nodes that are 

connected (typically an edge weight)
b. Second-Order (L2): pairwise proximity between two nodes, not 

connected but sharing neighbors

u v

   L1
   L2

tu

   
0.53



Large-Scale Information Network Embedding (LINE) [WWW ʻ15, Tang et. al.]

Higher-Order Methods
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◎ Define an empirical measure of First-Order proximity and a model-based 
prediction. We want to tune embedding table to bring empirical close to 
model. Note: Only applies to undirected graphs.

ModelEmpirical

Sigmoid of embedding dot 
product

Proportional to edge-weight 
(or 0 otherwise)



Large-Scale Information Network Embedding (LINE) [WWW ʻ15, Tang et. al.]

Higher-Order Methods
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◎ Objective function to minimize KL-divergence from empirical distribution to 
model-base prediction



Large-Scale Information Network Embedding (LINE) [WWW ʻ15, Tang et. al.]

Higher-Order Methods
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ModelEmpirical

◎ Second-Order proximity: Define a directed graph over V where edge weights 
represent neighborhood similarity of nodes (e.g, jaccard between two nodes 
neighbors) 

◎ Use a secondary embedding, fʼ, for embedding a “context” node (similar to 
word2vec)



Large-Scale Information Network Embedding (LINE) [WWW  ʻ15, Tang et. al.]

Higher-Order Methods

29

◎ Define a KL-divergence loss from the empirical second-order proximity 
distribution to the model-based one

◎ NOTE: Denominator of model-based term involves intractable summation



Large-Scale Information Network Embedding (LINE) [WWW  ʻ15, Tang et. al.]

Higher-Order Methods
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◎ Negative sampling (like node2vec) to sample “negative” edges for model-based 
term denominator.

◎ Learn embeddings for O1 and O2 independently and concatenate 
◎ Rather than SGD with raw edge weights, sample edges w/ Walker Alias method
◎ Experiments on text networks (co-occurring terms) in Wikipedia analogy 

a. 2nd order helps



GraRep [WWW ʻ15, Cao et. al.]

Higher-Order Methods
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◎ Can represent a single-step dynamics of a graph walk starting from u using 
matrix algebra:

◎ Similarly, can represent probability k-step walk starting from u will end at node 
v by iterative matrix multiplication

Normalized transition probs One-hot vector on node u



GraRep [WWW ʻ15, Cao et. al.]

Higher-Order Methods
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◎ Similar to LINE, formulate “empirical” and “model” quantities to represent 
transition probabilities for u → v for a k-step uniform random walk. Use a 
separate source-destination embedding table (f and fʼ):

ModelEmpirical



GraRep [WWW ʻ15, Cao et. al.]

Higher-Order Methods

33

◎ Define loss over KL-divergence between “empirical” k-step transition 
probability and model-defined. Using negative sampling to approximate model 
denominator (ala node2vec), and skipping some math

Constant 
involving negative 

sampling and 
number vertices



GraRep [WWW ʻ15, Cao et. al.]

Higher-Order Methods
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◎ Differentiating wrt fʼ(v)Tf(u) and setting to 0, we obtain

◎ Equivalent to the matrix factorization problem  A* = (Fʼ)T F
a. F and Fʼ are matrices where rows are node embeddings
b. A* represents matrix of right-hand-side expression 



GraRep [WWW ʻ15, Cao et. al.]

Higher-Order Methods

35

◎ Similar to GLOVE where word embeddings becomes matrix-factorization 
a. Similar pro/cons versus SkipGram word embeddings in terms of 

memory vs compute trade-offs
◎ Compute representations for different k lengths and concatenate



Recap

Higher-Order Methods

36

◎ Higher-order methods take “observed” graph properties (proximity 
structure or transition probabilities) and fit node embeddings as part of a 
model to match empirical properties

◎ Different methods encode different graph properties, but we see consistent 
value in encoding non-local structure.



Some Other Things To Check Out
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◎ Structural Deep Network 
Embedding (SDNE)
a.  [KDD ʻ16, Wang et. al.]
b. Jointly learn first- and 

second-order proximity at 
different auto-encoder layers

◎ Hierarchical Representation 
Learning For Networks (HARP)
a. [AAI ʻ18, Chen et. al]
b. Embed sequence of “coarser” 

graphs and “warm start” finer 
grained graph embedding

https://www.kdd.org/kdd2016/papers/files/rfp0191-wangAemb.pdf
https://arxiv.org/abs/1706.07845


Heterogeneous Graph 
Representation
Ahmed El-Kishky
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Homogeneous vs Heterogeneous Graphs

Homogeneous Graphs
◎ Single node type and single edge type
◎ Twitter 

a. users follow other users
Heterogeneous Graphs
◎ Multiple node and/or edge types
◎ Twitter:

○ users follow other users
○ users fave tweets
○ users reply_to tweets

39

homogeneous

heterogeneous



Heterogeneous Graphs

A heterogeneous graph is defined as:
G = (V, E, R, T)

◎ Nodes with node types vᵢ ∈ V
◎ Edges with relation types  (vᵢ , r, vⱼ ) ∈ E
◎ Node type T(vᵢ )
◎ Relation type r ∈ R

40



Heterogeneous Graphs in the Wild

◎ Social Networks (e.g., Twitter, Facebook)
◎ Bibliographic networks (e.g., DBLP, ArXiv, Pubmed)
◎ User-Item Engagement (e.g., e-Commerce, search engines)
◎ World Wide Web
◎ Biological networks

41
e-Commerce bibliographic social 



Heterogeneous Information Network 
Embeddings

42



Heterogeneous Star Network Embedding

◎ Star-schema network
○ Papers, keywords, authors, venues

◎ Embed the center node type
○ Learn paper representation

◎ Predict authors for anonymized 
papers
○ Dot (author-emb, paper-emb)

43

Author identification problemStar-schema bibliographic network

Paper: Task-Guided and Path-Augmented Heterogeneous Network Embedding for Author Identification

https://web.cs.ucla.edu/~yzsun/papers/WSDM17_Chen.pdf


Heterogeneous Star Network Embedding

44Paper: Task-Guided and Path-Augmented Heterogeneous Network Embedding for Author Identification

https://web.cs.ucla.edu/~yzsun/papers/WSDM17_Chen.pdf


Multi-view Network Embedding

◎ Real-world graphs have many edge types 
between nodes.

◎ Multiple relationships means multiple 
views
○ Each relationship type is a view
○ On Twitter:

◉ Users follow other users
◉ Users retweet other users
◉ Users favorite tweets
◉ Users reply to tweets 

45Paper: An Attention-based Collaboration Framework for Multi-View Network Representation Learning: https://dl.acm.org/doi/pdf/10.1145/3132847.3133021 

https://dl.acm.org/doi/pdf/10.1145/3132847.3133021


Multi-view Network Embedding

◎ Nodes have view-specific embeddings
○ Regularization across views

◎ Robust embedding from attention across 
different viewsʼ embeddings

46Paper: An Attention-based Collaboration Framework for Multi-View Network Representation Learning: https://dl.acm.org/doi/pdf/10.1145/3132847.3133021 

https://dl.acm.org/doi/pdf/10.1145/3132847.3133021


Multi-view Network Embedding

Node classification task

47Paper: An Attention-based Collaboration Framework for Multi-View Network Representation Learning: https://dl.acm.org/doi/pdf/10.1145/3132847.3133021 

Link prediction classification task

https://dl.acm.org/doi/pdf/10.1145/3132847.3133021


Heterogeneous Network Embeddings via Deep Architectures

◎ Heterogeneous information network consisting of linked text and images
◎ Objective: Makes the embeddings of linked nodes closer to each other
◎ Edge Types

○ Image-to-Image
○ Text-to-Image
○ Text-to-Text

◎

48Paper: Heterogeneous Network Embeddings with Deep Architectures: https://dl.acm.org/doi/10.1145/2783258.2783296



Heterogeneous Network Embeddings via Deep Architectures

49Paper: Heterogeneous Network Embeddings with Deep Architectures

https://dl.acm.org/doi/10.1145/2783258.2783296


Heterogeneous Network Embeddings via Deep Architectures

50Paper: Heterogeneous Network Embeddings with Deep Architectures

https://dl.acm.org/doi/10.1145/2783258.2783296


PTE: Predictive Text Embeddings via Large-scale 
Heterogeneous Text Networks

◎ Takes an unstructured text corpus and transforms into a heterogeneous text network
○ word-to-word, word-to-document, document-to-label edges

◎ Embed nodes of induced heterogeneous information network

51Paper: Predictive Text Embeddings via Large-scale Heterogeneous Text Networks

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/fp292-Tang.pdf


PTE: Predictive Text Embeddings via Large-scale 
Heterogeneous Text Networks

52Paper: Predictive Text Embeddings via Large-scale Heterogeneous Text Networks

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/fp292-Tang.pdf


PTE: Predictive Text Embeddings via Large-scale 
Heterogeneous Text Networks

53Paper: Predictive Text Embeddings via Large-scale Heterogeneous Text Networks

Long Document Text Classification

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/fp292-Tang.pdf


PTE: Predictive Text Embeddings via Large-scale 
Heterogeneous Text Networks

54Paper: Predictive Text Embeddings via Large-scale Heterogeneous Text Networks

Short Document Text Classification

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/fp292-Tang.pdf


Knowledge Graph Embedding Techniques for 
Heterogeneous Graph Embeddings

55



Workflow of Shallow Heterogenous Graph Embedding

56

Lookup Layer

Positive 
Edges

Negative 
Samples

Training

Gradient 
Descent

Scoring 



Shallow Heterogeneous Graph Embedding  (Knowledge Graph 
Embedding Techniques)

Many knowledge graph embedding (KGE) techniques have been proposed

1. RESCAL (Nickel et al, 2011)
2. TransE (Bordes et al, 2013)
3. Neural Tensor Network (Socher et al, 2013)
4. DistMult (Yang et al, 2015)
5. Complex Embeddings (Trouillon et al, 2016)
6. Quaternion Embeddings (Zhang et al, 2019)

57



RESCAL: A Three-way Model for Collective Learning on 
Multi-relational Data

Tensor factorization on the <head-entity, tail-entity, relation> tensor

58

◎ pairs of entities are 
represented via the tensor 
product of their 
embeddings

◎ difficult to scale quadratic 
runtime and memory 
complexity (embedding 
dimension)

Paper: A Three-Way Model for Collective Learning on Multi-Relational Data

https://icml.cc/2011/papers/438_icmlpaper.pdf


RESCAL: A Three-way Model for Collective Learning on 
Multi-relational Data

◎ Tensor factorization on the <head-entity, tail-entity, relation> tensor

◎ A is a n × r matrix, representing the global entity-latent-component space
◎ Rk is an asymmetric r × r matrix that specifies the interaction of the latent 

components per predicate

59Paper: A Three-Way Model for Collective Learning on Multi-Relational Data

https://icml.cc/2011/papers/438_icmlpaper.pdf


TransE for Embedding Heterogeneous Graphs

◎ Translation Embedding (TransE): when adding the relation to the head entity, we 
should get close to the target tail entity

60
Paper: Translating Embeddings for Modeling Multi-relational Data

https://papers.nips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf


TransE for Embedding Heterogeneous Graphs

◎ Margin based loss function:
○ Minimize the distance between (h+l) and t.
○ Maximize the distance between (h+l) to a randomly sampled tail tʼ (negative 

example).

61Paper: Translating Embeddings for Modeling Multi-relational Data

https://papers.nips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf


TransE for Embedding Heterogeneous Graphs

62Paper: Translating Embeddings for Modeling Multi-relational Data

https://papers.nips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf


TransE for Embedding Heterogeneous Graphs

63Paper: Translating Embeddings for Modeling Multi-relational Data

https://papers.nips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf


Embedding Twitter Heterogeneous Information Network 
(TwHIN) – TransE in the Wild

64

◎ As TransE is scalable, it can be 
used to embed graphs 
consisting of billions of nodes 
and hundreds of billions of 
edges.

◎ Subsets of nodes, their 
embeddings, and associated 
edges are loaded into 
memory.

◎ TransE training to learn 
embeddings

Paper: TwHIN: Embedding the Twitter Heterogeneous Information Network for Personalized Recommendation

https://arxiv.org/pdf/2202.05387.pdf


Embedding Twitter Heterogeneous Information Network 
(TwHIN) – TransE in the Wild

65
Paper: TwHIN: Embedding the Twitter Heterogeneous Information Network for Personalized Recommendation

https://arxiv.org/pdf/2202.05387.pdf


Neural Tensor Networks for  Embedding Heterogeneous 
Graphs

◎ Model the bilinear interaction between entity pairs using tensors
○ The model computes a score of how likely it is that two entities are in a 

certain relationship by the following NTN-based function g(e1, R, e2):

66Paper: Reasoning with Neural Tensor Networks for Knowledge Base Completion

https://proceedings.neurips.cc/paper/2013/file/b337e84de8752b27eda3a12363109e80-Paper.pdf


Neural Tensor Networks for  Embedding Heterogeneous 
Graphs

◎ Training objective: T(i)
c = (e(i)

1, R(i),ec) is a triplet with a random entity
corrupted from a correct triplet T (i) = (e(i)

1, R(i), e(i)
2)

● Score the correct relation triplet higher than its corrupted one up to a margin of 1.
● For each correct triplet sample C random corrupted triplets.

67Paper: Reasoning with Neural Tensor Networks for Knowledge Base Completion

https://proceedings.neurips.cc/paper/2013/file/b337e84de8752b27eda3a12363109e80-Paper.pdf


DistMult (bilinear-diag): Embedding Entities and Relations for 
Learning and Inference in Knowledge Bases

◎ Special case of neural tensor network
○ without nonlinear layer, linear operator, and uses 2-d matrix instead of tensor for the relation

◎ Bi-linear formulation with diagonal matrix relation
○ same number of parameters as TransE
○ element-wise product between relation embedding and entity embedding

68Paper: Embedding Entities and Relations for Learning and Inference in Knowledge Bases

vs

RESCAL DistMult

https://arxiv.org/pdf/1412.6575.pdf


DistMult (bilinear-diag)

◎ Performance increases as complexity of model decreases
◎ Likely because these graphs are relatively small, so overfitting with 

complex models

69Paper: Embedding Entities and Relations for Learning and Inference in Knowledge Bases

Link Prediction Task

https://arxiv.org/pdf/1412.6575.pdf


ComplEx Embeddings for Simple Link Prediction

◎ DistMult Performs dot product in real-space
○ This canʼt model anti-symmetric relationships

◎ ComplEx Embeddings
○ Extends DistMult by performing dot product in Complex space 

(Hermitian)
○ This can capture anti-symmetric relationships

70Paper: Complex Embeddings for Simple Link Prediction

http://proceedings.mlr.press/v48/trouillon16.pdf


ComplEx Embeddings for Simple Link Prediction

71Paper: Complex Embeddings for Simple Link Prediction

◎ Visualizing training, validation and test 
sets exps
○ one symmetric relation
○ one  antisymmetric relation
○ Red pixels are positive triples
○ Blue pixels are negatives
○ Green missing ones

◎ Top: Plots of the symmetric slice 
(relation) for the 10 first entities

◎  Bottom: Plots of the antisymmetric slice 
for the 10 first entities.

http://proceedings.mlr.press/v48/trouillon16.pdf


ComplEx Embeddings for Simple Link Prediction

72Paper: Complex Embeddings for Simple Link Prediction

http://proceedings.mlr.press/v48/trouillon16.pdf


ComplEx Embeddings for Simple Link Prediction

73Paper: Complex Embeddings for Simple Link Prediction

http://proceedings.mlr.press/v48/trouillon16.pdf


ComplEx Embeddings for Simple Link Prediction

74Paper: Complex Embeddings for Simple Link Prediction

Average Precision (AP) for each factorization rank from 1-50 for different KGE models on asymmetry and 
symmetry experiments. Top-left: AP for symmetric relation only, middle: AP for anti-symmetric relation, 
right: overall AP.

http://proceedings.mlr.press/v48/trouillon16.pdf


QuatE: Quaternion Knowledge Graph Embeddings

◎ QuatE: Hypercomplex representations to model entities and relations
(1) rotate the head quaternion using the unit relation quaternion

(2) take the quaternion inner product between the rotated head quaternion and the tail quaternion 
to score each triplet

Edge exists: rotated head entity has smaller angle between head/tail so the product is maximized
○ Edge does not exist: Head and tail entity are orthogonal so that their product becomes zero.

75Paper: Quaternion Knowledge Graph Embeddings

Complex Plane Quaternion units product sterographically projected hypersphere in 3D space. The purple dot 
indicates the position of the unit quaternion.

https://proceedings.neurips.cc/paper/2019/file/d961e9f236177d65d21100592edb0769-Paper.pdf


QuatE: Quaternion Knowledge Graph Embeddings

76Paper: Quaternion Knowledge Graph Embeddings

https://proceedings.neurips.cc/paper/2019/file/d961e9f236177d65d21100592edb0769-Paper.pdf


QuatE: Quaternion Knowledge Graph Embeddings

77Paper: Quaternion Knowledge Graph Embeddings

https://proceedings.neurips.cc/paper/2019/file/d961e9f236177d65d21100592edb0769-Paper.pdf


QuatE: Quaternion Knowledge Graph Embeddings

78Paper: Quaternion Knowledge Graph Embeddings

https://proceedings.neurips.cc/paper/2019/file/d961e9f236177d65d21100592edb0769-Paper.pdf


Break time!
Weʼll continue in 30 minutes

79



Graph Neural 
Networks
Michael Bronstein
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Beyond Shallow Embeddings: Deep Learning on Graphs

◎ Shallow embeddings are highly scalable due to their simplicity
○ Easy to train shallow embeddings for billions of nodes and trillions of 

edges
◎ However, this simplicity comes at a great cost

○ Shallow embeddings are transductive
○ Cannot generalize to new nodes / graphs

◎ Deep learning can allow us to have inductive node embeddings
○ Embed new nodes and new graphs



Inductive vs Transductive Embeddings



Graph Neural Networks

83

Input graph GNN Node Embeddings

Tasks & 
Loss



Challenges to Deep Learning on Graphs

◎ Standard deep learning is designed 
for structured inputs
○ grid images
○ text sequences

◎ Performing deep learning on 
graphs is different than on images 
or text



Why is Deep Learning on Graphs Hard?

◎ Not all data has locality / lives on a grid
○ Graphs lack locality
○ While Images / text can be plot on a grid

◎ Graphs can be arbitrarily large
◎ There is no canonical node ordering for graphs

VS



Graph Symmetries and Permutation Invariance
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Graph symmetries: permutations
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Adjacency matrix 
n×n

Feature matrix 
n×d

XA



Graph symmetries: permutations
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Adjacency matrix 
n×n

Feature matrix 
n×d

XA



Graph symmetries: permutations
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Adjacency matrix 
n×n

Feature matrix 
n×d

PXPAPT



Permutation invariance
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graph function f(X,A)

◎ Graph Neural networks consist of a shared function that operates on every node
○ The input are the collection of features in the neighbors of every node



Permutation invariance
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graph function f(X,A)

◎ Because we donʼt have any canonical ordering of the neighboring nodes, this graph function 
must be permutation invariant



Permutation invariance
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f(PX,PAPT) = f(X,A)
permutation invariant

◎ Because we donʼt have any canonical ordering of the neighboring nodes, this graph function 
must be permutation invariant



Permutation equivariance
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node function F(X,A)

◎ Apply this function to every node of the graph



Permutation equivariance
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node function F(X,A)

◎ Apply this function to every node of the graph



Local aggregation
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permutation invariant
◎ Apply this function to every node of the graph

○ Picking the right function such that results in permutation equivariant node-wise 
function 



Local aggregation
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F(X,A) = 

permutation equivariant

◎ Apply this function to every node of the graph
○ Picking the right function such that results in permutation equivariant node-wise 

function 



Are all Neural Network Architectures Permutation Equivariant?

98

permutation equivariant

◎ Not all neural architectures are permutation equivariant
○ Multi-layer perceptrons are not permutation invariant
○ Permuting the input changes the output

Need permutation equivariant / invariant architectures for GNNs



Flavors of GNNs
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Neural Message Passing
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Neural Message Passing
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Neighbor 
Representations Create Messages

= F(A → C)

= F(B → C)

Aggregate 
Messages

A=

B=

Current Node 
Representation

New Node 
Representation

Combine / Update

A B

C



Simple Message Passing

102Diagram from Jure Leskovec, Stanford University 

Two-step process
1. Average messages from neighbors
2. Apply a neural network to passed 

messages + current node

https://towardsdatascience.com/introduction-to-message-passing-neural-networks-e670dc103a87


Simple Message Passing

103Diagram from Jure Leskovec, Stanford University 

https://towardsdatascience.com/introduction-to-message-passing-neural-networks-e670dc103a87


Simple Message Passing: Arbitrary Depth

104Diagram from Jure Leskovec, Stanford University 

Model can be applied at arbitrary proximity-depth (hops)
1. Nodes have embeddings at each layer
2. Layer 0 representations are the features of a node
3. Layer 1 representation gets message from nodes 

1-hop away

https://towardsdatascience.com/introduction-to-message-passing-neural-networks-e670dc103a87


Simple Message Passing: Update Function

105Diagram from Jure Leskovec, Stanford University 

1. Pool messages
a. averaging works 

2. then apply a neural 
network

https://towardsdatascience.com/introduction-to-message-passing-neural-networks-e670dc103a87


Neural Message Passing Example
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t=1

diagram source 

Simple message 
passing 

https://towardsdatascience.com/introduction-to-message-passing-neural-networks-e670dc103a87


Neural Message Passing Example
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t=1

diagram source 

Message is sum of 
neighborʼs hidden 
states

https://towardsdatascience.com/introduction-to-message-passing-neural-networks-e670dc103a87


Neural Message Passing Example
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t=2

diagram source 

Update function is 
the average of 
current hidden 
state and message

https://towardsdatascience.com/introduction-to-message-passing-neural-networks-e670dc103a87


Graph Convolutional Networks
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Standard Convolutional Neural Networks (CNN) 

110slide from Thomas Kipf, University of Amsterdam



Graph Convolutional Neural Networks (GNN) 

111
*slide from Thomas Kipf, University of AmsterdamPaper: Semi-supervised Classification with Graph Convolutional Networks

https://arxiv.org/pdf/1609.02907.pdf


Graph Convolutional Neural Networks (GNN) 

112Paper: Semi-supervised Classification with Graph Convolutional Networks

https://arxiv.org/pdf/1609.02907.pdf


Graph Convolutional Neural Networks (GNN) 

113Paper: Semi-supervised Classification with Graph Convolutional Networks

https://arxiv.org/pdf/1609.02907.pdf


Relationships between CNNs and GNN

114

◎ A convolutional neural network (CNN) is a special case of a graph neural 
network

◎ While the size of the filter is pre-defined in a CNN, a GNN takes in nodes with 
arbitrary degree (neighboring nodes)



Attention-based Graph Neural Networks

115



Introducing Transformers
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◎ Transformers architectures have 
shown state-of-the-art 
performance in many NLP and 
vision tasks

◎ adopts the mechanism of 
self-attention, differentially 
weighting the significance of each 
part of the input data

◎ not all nodeʼs neighbors are equally 
important
○ Attend to the relevant 

neighbors

Paper: Attention is all you Need

https://arxiv.org/pdf/1706.03762.pdf


Transformers are Graph Neural Networks

117
Blogpost: Transformers are Graph Neural Networks

https://graphdeeplearning.github.io/post/transformers-are-gnns/


Transformers are Graph Neural Networks

118Blogpost: Transformers are Graph Neural Networks

https://graphdeeplearning.github.io/post/transformers-are-gnns/


Graph Attention Networks

119
Paper: Graph Attention Networks

◎ Certain neighbors to a node are 
more important than others to 
its understanding

◎ Learn attention weights to 
identify the relevancy of nodes

◎

https://arxiv.org/pdf/1710.10903.pdf


Graph Neural Networks with Attention 

120
*slide from Thomas Kipf, University of Amsterdam

Paper: Graph Attention Networks

◎ Compared to GCNs
○ More expressive than GCNs
○ Slower than Graph Convolutional 

Networks

https://arxiv.org/pdf/1710.10903.pdf


Training GNNs on Unsupervised and Supervised Tasks
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Tasks to Learn Node Embeddings with GNNs

122

Unsupervised Objectives
Use graph structure as supervision

◎ Predict Node Similarity
○ Random Walk
○ DeepWalk

◎ Link prediction task
○ Hold-back edges and try to predict

Supervised Objectives
Externally labeled data

◎ Node classification
◎ Graph classification



Graph Representations for 
Recommender Systems
Ying Xiao

132



Graph embeddings give a dense representation per user and item; 
how do we incorporate them into recommender systems?

133



◎ Task: recommend relevant items to users.
◎ Web scale: >106-109 items, >109 users.

Applications: social media/networks, search, e-commerce, 
ads, video streaming, etc.

Web Scale Recommender System

134



Topic for this session

◎ How to integrate graph embeddings into web scale 
recommendation systems.

◎ Not discussed: methods that examine 
paths/neighbourhoods to directly provide 
recommendations or refine embeddings.

◎ See also: A Survey on Knowledge Graph-Based 
Recommender Systems
○

135

https://arxiv.org/abs/2003.00911
https://arxiv.org/abs/2003.00911


◎ Candidate Generation: retrieval task. 
◎ Ranking models: high precision ranking task.

Two-stage

136



Ranking models

137

Large trainable 
embedding 
already

Paper: Persia: An Open, Hybrid System Scaling Deep Learning-based Recommenders up to 100 Trillion Parameters

https://arxiv.org/abs/2111.05897


Large sparse features / large trainable embedding tables

◎ ID features – ids of items a user has previously found 
relevant – lead to huge tables (109-1012 params).

◎ Only recently easily trainable on GPU in torch 
(torchrec) and TensorFlow (NVidia HugeCTR SOK).

138

https://pytorch.org/torchrec/
https://developer.nvidia.com/blog/accelerating-embedding-with-the-hugectr-tensorflow-embedding-plugin/


Trainable embeddings: significant infrastructure investment

139Paper: Software-Hardware Co-design for Fast and Scalable Training of Deep Learning Recommendation Models

https://arxiv.org/abs/2104.05158


Pre-trained embeddings & end-to-end trained embeddings

Advantages:
◎ Infrastructural simplicity.
◎ Applicability to many tasks.
◎ Use data from different tasks.

Disadvantages
◎ Lack of task specificity (i.e., performance).
◎

140



Pre-trained and end-to-end trained embeddings are NOT 
mutually exclusive. You probably want both for key 
applications!

141



Inductive bias: pairwise interactions between item + user

142Paper: CuMFSGD: Fast and Scalable Matrix Factorization

https://arxiv.org/abs/1610.05838


Bilinear product

Prediction: <user vectori , item vectorj>

Key properties:
◎ Linear in user vectori , linear in item Qj.
◎ Output is a single scalar.

Intuition: capture interaction in mathematically simple, 
but still expressive way.

143



DLRM: Gram matrix of all embeddings for entities.

144
Paper: Deep Learning Recommendation Model for Personalization and Recommendation Systems

Concat pre-trained 
embedding here.

https://arxiv.org/abs/1906.00091


DLRM: basic idea

Start with many embeddings per user/item pair:
◎ Project them to the same dimension.
◎ Compute all inner-products of these embeddings.
◎ Concatenate n choose 2 unique ones with dense 

inputs.

This makes it easy to add new pre-trained embeddings.

145



Deep and Cross Network v1 and v2

1. Capture interaction with more than a single scalar.
2. Stack the interaction layers.

Paper: Deep & Cross Network for Ad Click Predictions

Paper: DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems

146

https://arxiv.org/abs/1708.05123
https://arxiv.org/abs/2008.13535


Interaction layers: more than a single scalar

147
Component-wise product



Practical Consideration 1: Normalization

◎ Most DNNs assume that neurons are approximately 
mean 0, variance 1 (e.g., batch norm, layer norm, MLP 
layer initializations).

◎ Try normalizing pre-trained embeddings before 
feeding into model

148

Paper: TwHIN: Embedding the Twitter Heterogeneous Information Network for Personalized Recommendation

https://arxiv.org/abs/2202.05387


Practical Consideration 2: Space/IO Efficiency

Embeddings can be made very space efficient:
◎ Compress with product quantization (PQ).
◎ Large compression ratios (>75%) without affecting 

downstream task metrics
◎ Fast implementations in Faiss; decoding trivial.

Paper: Product Quantization for nearest neighbor search

149

https://github.com/facebookresearch/faiss
https://lear.inrialpes.fr/pubs/2011/JDS11/jegou_searching_with_quantization.pdf


Product Quantization

150



PQ effect on downstream task

151



Practical Consideration 3: Drift Mitigation

◎ Over time, we want to retrain the model, but at time 
t+1, donʼt want embedding too different from time t.

◎ Principled approach – constrain difference between 
embeddings at different times. 
○ Works well, but doubles memory.

◎ More efficient approach – initialize training at time t+1 
with parameters from time t.

◎

152



Practical Consideration 4: Redundancy with pre-existing features

◎ For pre-existing models, graph embeddings may be 
very redundant with pre-existing features.
○ Especially when there lots of hand-crafted features  

with lots of data.
◎ Limits model improvements when adding graph 

embeddings.
○

153



Redundancy with pre-existing features

This is actually a desirable situation:
1. Add graph embedding.
2. Run feature selection on pre-existing features.
3. Remove many of them (85% for Twitter use case).
4. Reclaim the IO/compute budget for other model 

improvements such as scaling up model architecture.
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History Aggregation

◎ Idea: aggregate embeddings of relevant items per user
◎ Aggregation types: pooling, RNNs, attention.
◎ Broad in scope: many research papers.
◎ Example: DKN

○ After embedding, run attention between the 
candidate item and items previously relevant to a 
user.

155Paper: DKN: Deep Knowledge-Aware Network for News Recommendation

https://arxiv.org/abs/1801.08284


Path dependent methods

◎ Extract paths, run rnn over paths, pool for prediction.

156Paper: Explainable Reasoning over Knowledge Graphs for Recommendation

https://arxiv.org/abs/1811.04540


Summary: graph embeddings in ranking models

◎ Complementary to large trained embeddings, though 
typically *much* easier to get started with.

◎ Need to have both user and item representations.
◎ Plethora of practical tricks to make it work better.

157



Candidate Generation

158

Cand Gen Family Definition Example

Item-based 
(content-based)

Using item similarity, query 
similar items to what a user 
prefers.

User faves travel tweets, so 
suggest similar travel 
tweets.

Collaborative filtering Suggest preferred items from 
similar users to a user.

User A and B are similar, A 
likes travel tweets, so 
suggest travel tweets to B,



Heuristic and model based candidate generation

◎ Many candidate generation strategies are heuristics 
(e.g., most popular/recent items).

◎ Pre-trained embeddings fall into a family of ML model 
based techniques.
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Model-based Candidate Generation

Approximate nearest neighbor (ANN) based dense retrieval
◎ Retrieval from an index of items, or
◎ RS Models factored into two towers:

160

Figure from Yi et al., 
Sampling-bias-corrected neural 
modeling for large corpus item 
recommendations, 2019.

PrecomputePrecompute

Replace with ANN

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/6c8a86c981a62b0126a11896b7f6ae0dae4c3566.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/6c8a86c981a62b0126a11896b7f6ae0dae4c3566.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/6c8a86c981a62b0126a11896b7f6ae0dae4c3566.pdf


Plug and Play

Adding a graph embedding to candidate generation 
system tends to be straightforward e.g.,
◎ Take your embeddings, put them in an ANN index, 

query the ANN index at retrieval time.
◎ Add graph embedding to a two-tower model.

Packages: HNSW, Faiss

161

https://github.com/nmslib/hnswlib
https://github.com/facebookresearch/faiss/wiki/Faiss-indexes


k-NN retrieval “Locality implies similarity”

◎ We retrieve items that are close to a user in embedding 
space.

◎ Retrieved items are close in embedding space too.
◎ => Retrieved items are similar to each other.

When items are too similar→ issues with diversity, 
multi-modal interests, polysemy in search.
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Deep Personalized and Semantic Retrieval (DPSR)

Idea: query the kNN index with 
k embeddings.

Paper, Towards Personalized and 
Semantic Retrieval: An End-to-End

Solution for E-commerce Search via 
Embedding Learning

163

Replace with ANN

https://arxiv.org/abs/2006.02282
https://arxiv.org/abs/2006.02282
https://arxiv.org/abs/2006.02282
https://arxiv.org/abs/2006.02282


Given an item embedding, build a user representation:
◎ Cluster previously relevant items.
◎ For each cluster, compute the medoid (not centroid).
◎ For each user, weight the clusters with time decay.

To generate candidates: retrieve from ANN based on 3 
medoids, importance sampled. 

Pinnersage

164
Paper: PinnerSage: Multi-Modal User Embedding Framework for Recommendations at Pinterest

https://arxiv.org/abs/2007.03634


PinnerSage Results

165

Item Clustering 
Multiple Queries

Tuning time 
decay



k-NN Embed: Multiple querying on top of a kNN system

◎ (Globally) cluster all the items in your embedding.
◎ Model each user as a mixture over item clusters:

◎ Idea: data per user is sparse, so use data from adjacent 
users since we know theyʼre similar.

166Paper: kNN-Embed: Locally Smoothed Embedding Mixtures For Multi-interest Candidate Retrieval

https://arxiv.org/abs/2205.06205


k-NN Embed:

167

Userʼs preference over clusters: 
smooth this with neighboring 
usersʼ preference over clusters.

ANN retrieval – query from the 
centroid of this user in the cluster 
smoothed with centroids of 
neighbouring users



k-NN Embed: Expand ANN search by using similar users
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k-NN Embed: Improvements in diversity
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Summary: graph embedding in candidate generation

◎ Plays nice with ANN based candidate generation.
◎ Multiple querying, and more sophisticated techniques, 

allow us increase diversity in retrieved candidates.
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Thanks!
Any questions?

171

Come chat with us about our KDD 2022 Applied Data Science Paper!

Paper: TwHIN: Embedding the Twitter Heterogeneous Information Network for Personalized Recommendation

Poster Session: Monday, August 15, 7:00 pm to 8:30 pm.

Oral:  Thursday, August 18, 10:00 AM-12:00 PM (~10:50 AM), Room 3 (Graph Learning & Social Network). 

https://arxiv.org/abs/2202.05387

