
Graph Representation
Learning for Web-Scale
Recommender Systems
Ahmed El-Kishky, Michael Bronstein, Ying Xiao, Aria Haghighi

August 14, 2022

Lecturers

2

Ahmed El-Kishky
Staff ML Researcher

Twitter Inc.

aelkishky@twitter.com

Michael Bronstein
Professor of Computer Science

Oxford University

michael.bronstein@cs.ox.ac.uk

Ying Xiao
Sr. Staff Researcher

Twitter Inc.

yxiao@twitter.com

Aria Haghighi
Senior Eng. Manager

Twitter Inc.

 ahaghighi@twitter.com

Tutorial Outline

1. Introduction & Motivations
2. Homogenous Graph Representation Learning
3. Heterogeneous Graph Representation Learning
4. Break
5. Graph Neural Networks
6. Graph-based Representations for Recommender Systems

3

Intro and Motivation
Aria Haghighi

4

Recommender Systems

5

Technical Definition
◎ Given candidate items (i), rank items by

relevance for a given user uʼs preferences
◎ CTR model: Relevance is probability of

“engagement” (click, watch, follow, like,
etc.)

Caveats

◎ Other formulations and variations
exist (e.g, LTV, non-personalized, etc.)

◎ Production systems have many more
components and rules …..

Recommender Systems

Many Applications For Different “items”
◎ Ads ranking [Ads]
◎ Account recommendations for social networks

[Suggested User]
◎ Content recommendation for streaming

services (e.g, Netflix, Disney+, etc.) [Videos]
Importance
◎ Recommender systems are typically the ML

models closest to business objectives (e.g, Ads
revenue, growing social graph, watch time)

Approaches To Recommender Systems

Collaborative Filtering (CF)
Leverage (user, item)
engagement behavior
● Matrix factorization
● Predictive models (i.e,

DLRM)

3 2

1 0

Content-Based
Item-item similarity. Useful
when few engagements
● Vector space document

model
● Transformer-based

representations of items
(E.g, BERT or CLIP) ◎ Production systems are usually mixture of

both approaches
◎ This tutorial focused on collaborative

filtering, but some content-based extensions

Recommender System Challenges

Sparsity and Cold-Start
◎ CF works reasonably well when there is

(user, item) density
◎ Cold-start: When user or item has

little-to-no past engagements to power CF.
a. Prevalent for sparse engagement

targets (e.g, performance ad actions
like e-commerce purchases)

◎ This tutorial: Pre-trained graph
embeddings can address cold-start and
sparse recommendation problems

Tutorial In A Nutshell

● Build graph of interactions between users, items, and other domain
entities (e.g, ads, advertisers, content tags, etc.)

● Embed all graph entities

Ad1

[-0.13, 0.57, … 0.69]

[-0.44, 0.29, … -0.53]

[0.92, -0.21, … -0.65]

[0.29, -0.11, … -0.41]

Tutorial In A Nutshell

● These pre-trained entity embeddings can be used for many different
tasks involving business entities
○ Entity classification (e.g, account classification)
○ Recommendation candidate retrieval
○ Inputs to recommendations ranking models

[-0.13, 0.57, … 0.69]

Actor or
Musician?

Classification

[-0.13, 0.57, … 0.69]

Retrieval Ranking

[-0.13, 0.57, … 0.69]

0.25, 0.91, … -0.49]

P(engage | ,)

Homogenous Graph
Representation
Aria Haghighi

11

Homogeneous Graph Representations

12

Homogeneous Graphs
◎ Single node type and single edge type
◎ Twitter

a. users follow other users
Running Application Example
◎ Nodes represent users and (single) edge

type for user following relation
◎ Account recommendation: What account

should a user follow?

homogeneous

Future sections will generalize to
heterogeneous graphs (multiple edge
types)

Homogeneous Graph Representations

13

Node Embeddings
◎ Represent each graph node u by a vector,

or embedding, f(u) in ℝn

◎ Learn f so that “similar” nodes (u, v) map
to vectors f(u) and f(v) close together

u

v

f(u)

f(v)

ℝn

Homogeneous Graph Representations

14

Why bother with embeddings?
◎ Translate complex relational

data into representation more
amenable for Deep ML models

◎ Querying for “similarity” is
more efficient leveraging
approximate nearest neighbor
(ANN) algorithms

Ranking

[-0.13, 0.57, … 0.69]

0.25, 0.91, … -0.49]

P(engage | ,)

[-0.13, 0.57, … 0.69]

Retrieval

Random Walk Approaches

15

Defining Objective
◎ Very similar to word2vec
◎ Given nodes “similar” to node u, denoted S(u), assign node embedding

to maximize probability of this “observed” data

Random Walk Approaches

16

Two Modeling Choices
◎ How do we choose “similar” nodes S(u)?

a. Determines kind of similarity captured by embeddings
◎ How to avoid computing denominator of P(v | u)?

Random Walk Approaches

17

DeepWalk (KDD ʻ14, Perrozi et. al.)

◎ Similar Nodes S(u): Sample fixed-length random walks from
each node. S(u) are nodes in a window around u weighed by
window co-occurrence in sampled walks

u

vs t

a
b v u t

t u v

u t

S(u)= {
v (2), t (3), b (1)

}

[Citation]

b

https://arxiv.org/abs/1403.6652?source=post_page---------------------------
https://arxiv.org/abs/1403.6652?source=post_page

Random Walk Approaches

18

DeepWalk (KDD ʻ14, Perrozi et. al.)

◎ Model P(v | u) using hierarchical softmax
◎ Create binary tree, where leaves are nodes V.

a. Each binary branch has a probability of going left (or
right) given input embedding, f(u).

b. P(v | u) is product of binary choices in path to v

b t u

n0

s

n1 n2

Sigmoid

https://arxiv.org/abs/1403.6652?source=post_page---------------------------

Random Walk Approaches

19

Recap of DeepWalk (KDD ʻ14, Perrozi et. al.)

◎ Learn embeddings of dimension d for each node in V
a. This entails d |V | parameters to learn (e.g, embedding table)

◎ Sample short random walks for each node, use context window
frequency for similarity multiset S(u)

◎ Hierarchical-softmax to model P(v|u) as sequence of binary decisions
conditioned on embedding of u
a. Can use arbitrary coding mechanism, but Huffman encoding used

originally (what benefit?)
b. This adds d (|V|-1) parameters (why?)

https://arxiv.org/abs/1403.6652?source=post_page---------------------------

Random Walk Approaches

20

node2vec (KDD ʻ16, Grover & Leskovec)

◎ Similar Nodes S(u): Similar to DeepWalk, but richer parametrization
of random walks to allow flexibility

◎ Breadth-first search (BFS) and Depth-First search (DFS) yield a
microscopic (local) and macroscopic (global) view of the graph
respectively

[Figure from node2vec paper]

https://arxiv.org/abs/1607.00653?context=cs
https://arxiv.org/abs/1403.6652?source=post_page---------------------------
https://arxiv.org/abs/1403.6652?source=post_page

Random Walk Approaches

21

node2vec (KDD ʻ16, Grover & Leskovec)

◎ Biased Random Walk: Introduce hyper-parameters p and q which will allow you
to interpolate between a more BFS vs DFS-like random walk

◎ Imagine we just traversed (s, u) edge in our random walk. Compute 2nd order
transition probabilities P(t | s, u)

https://arxiv.org/abs/1607.00653?context=cs
https://arxiv.org/abs/1403.6652?source=post_page---------------------------

Random Walk Approaches

22

node2vec (KDD ʻ16, Grover & Leskovec)

◎ Small p (large p-1) is more BFS-like
since encourage walk to stay close
to start

◎ Small q (large q-1) is more DFS-like
since encourage walk to wander
further away

◎ Recover DeepWalk sampling for
p=q=1

https://arxiv.org/abs/1607.00653?context=cs
https://arxiv.org/abs/1403.6652?source=post_page---------------------------

Random Walk Approaches

23

node2vec (KDD ʻ16, Grover & Leskovec)

◎ SkipGram Objective
a. Negative Sampling: Approximate denominator by sampling from

distribution, D(u) , over “negative” contexts for node u
b. Noise Contrastive Estimation (NCE): optimize probability of true

vs false “negative samples”

https://arxiv.org/abs/1607.00653?context=cs
https://arxiv.org/abs/1403.6652?source=post_page---------------------------

Random Walk Approaches

24

Recap

◎ Embed graph nodes by preserving pairwise node similarity, where node
similarity is defined by co-occurence of nodes in a random walk

◎ DeepWalk samples short random walks uniformly, but node2vec has
hyper-parameters to encourage walks to interpolate between DFS and
BFS (to capture macro- and micro- concepts of similarity)

◎ For the user following graph, this yields user embeddings capturing
similar follow behavior
a. Similar Accounts: Retrieve nearest neighbors of a given userʼs

embedding
b. Account Classification: Build a model with user embeddings as

input

Higher-Order Methods

25

◎ Instead of obtaining “similar” nodes via random walk sampling, can we
directly model graph properties?

◎ Graph Proximity
a. First-Order (L1): pairwise proximity between two nodes that are

connected (typically an edge weight)
b. Second-Order (L2): pairwise proximity between two nodes, not

connected but sharing neighbors

u v

 L1
 L2

tu

0.53

Large-Scale Information Network Embedding (LINE) [WWW ʻ15, Tang et. al.]

Higher-Order Methods

26

◎ Define an empirical measure of First-Order proximity and a model-based
prediction. We want to tune embedding table to bring empirical close to
model. Note: Only applies to undirected graphs.

ModelEmpirical

Sigmoid of embedding dot
product

Proportional to edge-weight
(or 0 otherwise)

Large-Scale Information Network Embedding (LINE) [WWW ʻ15, Tang et. al.]

Higher-Order Methods

27

◎ Objective function to minimize KL-divergence from empirical distribution to
model-base prediction

Large-Scale Information Network Embedding (LINE) [WWW ʻ15, Tang et. al.]

Higher-Order Methods

28

ModelEmpirical

◎ Second-Order proximity: Define a directed graph over V where edge weights
represent neighborhood similarity of nodes (e.g, jaccard between two nodes
neighbors)

◎ Use a secondary embedding, fʼ, for embedding a “context” node (similar to
word2vec)

Large-Scale Information Network Embedding (LINE) [WWW ʻ15, Tang et. al.]

Higher-Order Methods

29

◎ Define a KL-divergence loss from the empirical second-order proximity
distribution to the model-based one

◎ NOTE: Denominator of model-based term involves intractable summation

Large-Scale Information Network Embedding (LINE) [WWW ʻ15, Tang et. al.]

Higher-Order Methods

30

◎ Negative sampling (like node2vec) to sample “negative” edges for model-based
term denominator.

◎ Learn embeddings for O1 and O2 independently and concatenate
◎ Rather than SGD with raw edge weights, sample edges w/ Walker Alias method
◎ Experiments on text networks (co-occurring terms) in Wikipedia analogy

a. 2nd order helps

GraRep [WWW ʻ15, Cao et. al.]

Higher-Order Methods

31

◎ Can represent a single-step dynamics of a graph walk starting from u using
matrix algebra:

◎ Similarly, can represent probability k-step walk starting from u will end at node
v by iterative matrix multiplication

Normalized transition probs One-hot vector on node u

GraRep [WWW ʻ15, Cao et. al.]

Higher-Order Methods

32

◎ Similar to LINE, formulate “empirical” and “model” quantities to represent
transition probabilities for u → v for a k-step uniform random walk. Use a
separate source-destination embedding table (f and fʼ):

ModelEmpirical

GraRep [WWW ʻ15, Cao et. al.]

Higher-Order Methods

33

◎ Define loss over KL-divergence between “empirical” k-step transition
probability and model-defined. Using negative sampling to approximate model
denominator (ala node2vec), and skipping some math

Constant
involving negative

sampling and
number vertices

GraRep [WWW ʻ15, Cao et. al.]

Higher-Order Methods

34

◎ Differentiating wrt fʼ(v)Tf(u) and setting to 0, we obtain

◎ Equivalent to the matrix factorization problem A* = (Fʼ)T F
a. F and Fʼ are matrices where rows are node embeddings
b. A* represents matrix of right-hand-side expression

GraRep [WWW ʻ15, Cao et. al.]

Higher-Order Methods

35

◎ Similar to GLOVE where word embeddings becomes matrix-factorization
a. Similar pro/cons versus SkipGram word embeddings in terms of

memory vs compute trade-offs
◎ Compute representations for different k lengths and concatenate

Recap

Higher-Order Methods

36

◎ Higher-order methods take “observed” graph properties (proximity
structure or transition probabilities) and fit node embeddings as part of a
model to match empirical properties

◎ Different methods encode different graph properties, but we see consistent
value in encoding non-local structure.

Some Other Things To Check Out

37

◎ Structural Deep Network
Embedding (SDNE)
a. [KDD ʻ16, Wang et. al.]
b. Jointly learn first- and

second-order proximity at
different auto-encoder layers

◎ Hierarchical Representation
Learning For Networks (HARP)
a. [AAI ʻ18, Chen et. al]
b. Embed sequence of “coarser”

graphs and “warm start” finer
grained graph embedding

https://www.kdd.org/kdd2016/papers/files/rfp0191-wangAemb.pdf
https://arxiv.org/abs/1706.07845

Heterogeneous Graph
Representation
Ahmed El-Kishky

38

Homogeneous vs Heterogeneous Graphs

Homogeneous Graphs
◎ Single node type and single edge type
◎ Twitter

a. users follow other users
Heterogeneous Graphs
◎ Multiple node and/or edge types
◎ Twitter:

○ users follow other users
○ users fave tweets
○ users reply_to tweets

39

homogeneous

heterogeneous

Heterogeneous Graphs

A heterogeneous graph is defined as:
G = (V, E, R, T)

◎ Nodes with node types vᵢ ∈ V
◎ Edges with relation types (vᵢ , r, vⱼ) ∈ E
◎ Node type T(vᵢ)
◎ Relation type r ∈ R

40

Heterogeneous Graphs in the Wild

◎ Social Networks (e.g., Twitter, Facebook)
◎ Bibliographic networks (e.g., DBLP, ArXiv, Pubmed)
◎ User-Item Engagement (e.g., e-Commerce, search engines)
◎ World Wide Web
◎ Biological networks

41
e-Commerce bibliographic social

Heterogeneous Information Network
Embeddings

42

Heterogeneous Star Network Embedding

◎ Star-schema network
○ Papers, keywords, authors, venues

◎ Embed the center node type
○ Learn paper representation

◎ Predict authors for anonymized
papers
○ Dot (author-emb, paper-emb)

43

Author identification problemStar-schema bibliographic network

Paper: Task-Guided and Path-Augmented Heterogeneous Network Embedding for Author Identification

https://web.cs.ucla.edu/~yzsun/papers/WSDM17_Chen.pdf

Heterogeneous Star Network Embedding

44Paper: Task-Guided and Path-Augmented Heterogeneous Network Embedding for Author Identification

https://web.cs.ucla.edu/~yzsun/papers/WSDM17_Chen.pdf

Multi-view Network Embedding

◎ Real-world graphs have many edge types
between nodes.

◎ Multiple relationships means multiple
views
○ Each relationship type is a view
○ On Twitter:

◉ Users follow other users
◉ Users retweet other users
◉ Users favorite tweets
◉ Users reply to tweets

45Paper: An Attention-based Collaboration Framework for Multi-View Network Representation Learning: https://dl.acm.org/doi/pdf/10.1145/3132847.3133021

https://dl.acm.org/doi/pdf/10.1145/3132847.3133021

Multi-view Network Embedding

◎ Nodes have view-specific embeddings
○ Regularization across views

◎ Robust embedding from attention across
different viewsʼ embeddings

46Paper: An Attention-based Collaboration Framework for Multi-View Network Representation Learning: https://dl.acm.org/doi/pdf/10.1145/3132847.3133021

https://dl.acm.org/doi/pdf/10.1145/3132847.3133021

Multi-view Network Embedding

Node classification task

47Paper: An Attention-based Collaboration Framework for Multi-View Network Representation Learning: https://dl.acm.org/doi/pdf/10.1145/3132847.3133021

Link prediction classification task

https://dl.acm.org/doi/pdf/10.1145/3132847.3133021

Heterogeneous Network Embeddings via Deep Architectures

◎ Heterogeneous information network consisting of linked text and images
◎ Objective: Makes the embeddings of linked nodes closer to each other
◎ Edge Types

○ Image-to-Image
○ Text-to-Image
○ Text-to-Text

◎

48Paper: Heterogeneous Network Embeddings with Deep Architectures: https://dl.acm.org/doi/10.1145/2783258.2783296

Heterogeneous Network Embeddings via Deep Architectures

49Paper: Heterogeneous Network Embeddings with Deep Architectures

https://dl.acm.org/doi/10.1145/2783258.2783296

Heterogeneous Network Embeddings via Deep Architectures

50Paper: Heterogeneous Network Embeddings with Deep Architectures

https://dl.acm.org/doi/10.1145/2783258.2783296

PTE: Predictive Text Embeddings via Large-scale
Heterogeneous Text Networks

◎ Takes an unstructured text corpus and transforms into a heterogeneous text network
○ word-to-word, word-to-document, document-to-label edges

◎ Embed nodes of induced heterogeneous information network

51Paper: Predictive Text Embeddings via Large-scale Heterogeneous Text Networks

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/fp292-Tang.pdf

PTE: Predictive Text Embeddings via Large-scale
Heterogeneous Text Networks

52Paper: Predictive Text Embeddings via Large-scale Heterogeneous Text Networks

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/fp292-Tang.pdf

PTE: Predictive Text Embeddings via Large-scale
Heterogeneous Text Networks

53Paper: Predictive Text Embeddings via Large-scale Heterogeneous Text Networks

Long Document Text Classification

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/fp292-Tang.pdf

PTE: Predictive Text Embeddings via Large-scale
Heterogeneous Text Networks

54Paper: Predictive Text Embeddings via Large-scale Heterogeneous Text Networks

Short Document Text Classification

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/fp292-Tang.pdf

Knowledge Graph Embedding Techniques for
Heterogeneous Graph Embeddings

55

Workflow of Shallow Heterogenous Graph Embedding

56

Lookup Layer

Positive
Edges

Negative
Samples

Training

Gradient
Descent

Scoring

Shallow Heterogeneous Graph Embedding (Knowledge Graph
Embedding Techniques)

Many knowledge graph embedding (KGE) techniques have been proposed

1. RESCAL (Nickel et al, 2011)
2. TransE (Bordes et al, 2013)
3. Neural Tensor Network (Socher et al, 2013)
4. DistMult (Yang et al, 2015)
5. Complex Embeddings (Trouillon et al, 2016)
6. Quaternion Embeddings (Zhang et al, 2019)

57

RESCAL: A Three-way Model for Collective Learning on
Multi-relational Data

Tensor factorization on the <head-entity, tail-entity, relation> tensor

58

◎ pairs of entities are
represented via the tensor
product of their
embeddings

◎ difficult to scale quadratic
runtime and memory
complexity (embedding
dimension)

Paper: A Three-Way Model for Collective Learning on Multi-Relational Data

https://icml.cc/2011/papers/438_icmlpaper.pdf

RESCAL: A Three-way Model for Collective Learning on
Multi-relational Data

◎ Tensor factorization on the <head-entity, tail-entity, relation> tensor

◎ A is a n × r matrix, representing the global entity-latent-component space
◎ Rk is an asymmetric r × r matrix that specifies the interaction of the latent

components per predicate

59Paper: A Three-Way Model for Collective Learning on Multi-Relational Data

https://icml.cc/2011/papers/438_icmlpaper.pdf

TransE for Embedding Heterogeneous Graphs

◎ Translation Embedding (TransE): when adding the relation to the head entity, we
should get close to the target tail entity

60
Paper: Translating Embeddings for Modeling Multi-relational Data

https://papers.nips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf

TransE for Embedding Heterogeneous Graphs

◎ Margin based loss function:
○ Minimize the distance between (h+l) and t.
○ Maximize the distance between (h+l) to a randomly sampled tail tʼ (negative

example).

61Paper: Translating Embeddings for Modeling Multi-relational Data

https://papers.nips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf

TransE for Embedding Heterogeneous Graphs

62Paper: Translating Embeddings for Modeling Multi-relational Data

https://papers.nips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf

TransE for Embedding Heterogeneous Graphs

63Paper: Translating Embeddings for Modeling Multi-relational Data

https://papers.nips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf

Embedding Twitter Heterogeneous Information Network
(TwHIN) – TransE in the Wild

64

◎ As TransE is scalable, it can be
used to embed graphs
consisting of billions of nodes
and hundreds of billions of
edges.

◎ Subsets of nodes, their
embeddings, and associated
edges are loaded into
memory.

◎ TransE training to learn
embeddings

Paper: TwHIN: Embedding the Twitter Heterogeneous Information Network for Personalized Recommendation

https://arxiv.org/pdf/2202.05387.pdf

Embedding Twitter Heterogeneous Information Network
(TwHIN) – TransE in the Wild

65
Paper: TwHIN: Embedding the Twitter Heterogeneous Information Network for Personalized Recommendation

https://arxiv.org/pdf/2202.05387.pdf

Neural Tensor Networks for Embedding Heterogeneous
Graphs

◎ Model the bilinear interaction between entity pairs using tensors
○ The model computes a score of how likely it is that two entities are in a

certain relationship by the following NTN-based function g(e1, R, e2):

66Paper: Reasoning with Neural Tensor Networks for Knowledge Base Completion

https://proceedings.neurips.cc/paper/2013/file/b337e84de8752b27eda3a12363109e80-Paper.pdf

Neural Tensor Networks for Embedding Heterogeneous
Graphs

◎ Training objective: T(i)
c = (e(i)

1, R(i),ec) is a triplet with a random entity
corrupted from a correct triplet T (i) = (e(i)

1, R(i), e(i)
2)

● Score the correct relation triplet higher than its corrupted one up to a margin of 1.
● For each correct triplet sample C random corrupted triplets.

67Paper: Reasoning with Neural Tensor Networks for Knowledge Base Completion

https://proceedings.neurips.cc/paper/2013/file/b337e84de8752b27eda3a12363109e80-Paper.pdf

DistMult (bilinear-diag): Embedding Entities and Relations for
Learning and Inference in Knowledge Bases

◎ Special case of neural tensor network
○ without nonlinear layer, linear operator, and uses 2-d matrix instead of tensor for the relation

◎ Bi-linear formulation with diagonal matrix relation
○ same number of parameters as TransE
○ element-wise product between relation embedding and entity embedding

68Paper: Embedding Entities and Relations for Learning and Inference in Knowledge Bases

vs

RESCAL DistMult

https://arxiv.org/pdf/1412.6575.pdf

DistMult (bilinear-diag)

◎ Performance increases as complexity of model decreases
◎ Likely because these graphs are relatively small, so overfitting with

complex models

69Paper: Embedding Entities and Relations for Learning and Inference in Knowledge Bases

Link Prediction Task

https://arxiv.org/pdf/1412.6575.pdf

ComplEx Embeddings for Simple Link Prediction

◎ DistMult Performs dot product in real-space
○ This canʼt model anti-symmetric relationships

◎ ComplEx Embeddings
○ Extends DistMult by performing dot product in Complex space

(Hermitian)
○ This can capture anti-symmetric relationships

70Paper: Complex Embeddings for Simple Link Prediction

http://proceedings.mlr.press/v48/trouillon16.pdf

ComplEx Embeddings for Simple Link Prediction

71Paper: Complex Embeddings for Simple Link Prediction

◎ Visualizing training, validation and test
sets exps
○ one symmetric relation
○ one antisymmetric relation
○ Red pixels are positive triples
○ Blue pixels are negatives
○ Green missing ones

◎ Top: Plots of the symmetric slice
(relation) for the 10 first entities

◎ Bottom: Plots of the antisymmetric slice
for the 10 first entities.

http://proceedings.mlr.press/v48/trouillon16.pdf

ComplEx Embeddings for Simple Link Prediction

72Paper: Complex Embeddings for Simple Link Prediction

http://proceedings.mlr.press/v48/trouillon16.pdf

ComplEx Embeddings for Simple Link Prediction

73Paper: Complex Embeddings for Simple Link Prediction

http://proceedings.mlr.press/v48/trouillon16.pdf

ComplEx Embeddings for Simple Link Prediction

74Paper: Complex Embeddings for Simple Link Prediction

Average Precision (AP) for each factorization rank from 1-50 for different KGE models on asymmetry and
symmetry experiments. Top-left: AP for symmetric relation only, middle: AP for anti-symmetric relation,
right: overall AP.

http://proceedings.mlr.press/v48/trouillon16.pdf

QuatE: Quaternion Knowledge Graph Embeddings

◎ QuatE: Hypercomplex representations to model entities and relations
(1) rotate the head quaternion using the unit relation quaternion

(2) take the quaternion inner product between the rotated head quaternion and the tail quaternion
to score each triplet

Edge exists: rotated head entity has smaller angle between head/tail so the product is maximized
○ Edge does not exist: Head and tail entity are orthogonal so that their product becomes zero.

75Paper: Quaternion Knowledge Graph Embeddings

Complex Plane Quaternion units product sterographically projected hypersphere in 3D space. The purple dot
indicates the position of the unit quaternion.

https://proceedings.neurips.cc/paper/2019/file/d961e9f236177d65d21100592edb0769-Paper.pdf

QuatE: Quaternion Knowledge Graph Embeddings

76Paper: Quaternion Knowledge Graph Embeddings

https://proceedings.neurips.cc/paper/2019/file/d961e9f236177d65d21100592edb0769-Paper.pdf

QuatE: Quaternion Knowledge Graph Embeddings

77Paper: Quaternion Knowledge Graph Embeddings

https://proceedings.neurips.cc/paper/2019/file/d961e9f236177d65d21100592edb0769-Paper.pdf

QuatE: Quaternion Knowledge Graph Embeddings

78Paper: Quaternion Knowledge Graph Embeddings

https://proceedings.neurips.cc/paper/2019/file/d961e9f236177d65d21100592edb0769-Paper.pdf

Break time!
Weʼll continue in 30 minutes

79

Graph Neural
Networks
Michael Bronstein

80

Beyond Shallow Embeddings: Deep Learning on Graphs

◎ Shallow embeddings are highly scalable due to their simplicity
○ Easy to train shallow embeddings for billions of nodes and trillions of

edges
◎ However, this simplicity comes at a great cost

○ Shallow embeddings are transductive
○ Cannot generalize to new nodes / graphs

◎ Deep learning can allow us to have inductive node embeddings
○ Embed new nodes and new graphs

Inductive vs Transductive Embeddings

Graph Neural Networks

83

Input graph GNN Node Embeddings

Tasks &
Loss

Challenges to Deep Learning on Graphs

◎ Standard deep learning is designed
for structured inputs
○ grid images
○ text sequences

◎ Performing deep learning on
graphs is different than on images
or text

Why is Deep Learning on Graphs Hard?

◎ Not all data has locality / lives on a grid
○ Graphs lack locality
○ While Images / text can be plot on a grid

◎ Graphs can be arbitrarily large
◎ There is no canonical node ordering for graphs

VS

Graph Symmetries and Permutation Invariance

86

Graph symmetries: permutations

87

Adjacency matrix
n×n

Feature matrix
n×d

XA

Graph symmetries: permutations

88

Adjacency matrix
n×n

Feature matrix
n×d

XA

Graph symmetries: permutations

89

Adjacency matrix
n×n

Feature matrix
n×d

PXPAPT

Permutation invariance

90

graph function f(X,A)

◎ Graph Neural networks consist of a shared function that operates on every node
○ The input are the collection of features in the neighbors of every node

Permutation invariance

91

graph function f(X,A)

◎ Because we donʼt have any canonical ordering of the neighboring nodes, this graph function
must be permutation invariant

Permutation invariance

92

f(PX,PAPT) = f(X,A)
permutation invariant

◎ Because we donʼt have any canonical ordering of the neighboring nodes, this graph function
must be permutation invariant

Permutation equivariance

93

node function F(X,A)

◎ Apply this function to every node of the graph

Permutation equivariance

94

node function F(X,A)

◎ Apply this function to every node of the graph

Local aggregation

95

permutation invariant
◎ Apply this function to every node of the graph

○ Picking the right function such that results in permutation equivariant node-wise
function

Local aggregation

96

F(X,A) =

permutation equivariant

◎ Apply this function to every node of the graph
○ Picking the right function such that results in permutation equivariant node-wise

function

Are all Neural Network Architectures Permutation Equivariant?

98

permutation equivariant

◎ Not all neural architectures are permutation equivariant
○ Multi-layer perceptrons are not permutation invariant
○ Permuting the input changes the output

Need permutation equivariant / invariant architectures for GNNs

Flavors of GNNs

99

Neural Message Passing

100

Neural Message Passing

101

Neighbor
Representations Create Messages

= F(A → C)

= F(B → C)

Aggregate
Messages

A=

B=

Current Node
Representation

New Node
Representation

Combine / Update

A B

C

Simple Message Passing

102Diagram from Jure Leskovec, Stanford University

Two-step process
1. Average messages from neighbors
2. Apply a neural network to passed

messages + current node

https://towardsdatascience.com/introduction-to-message-passing-neural-networks-e670dc103a87

Simple Message Passing

103Diagram from Jure Leskovec, Stanford University

https://towardsdatascience.com/introduction-to-message-passing-neural-networks-e670dc103a87

Simple Message Passing: Arbitrary Depth

104Diagram from Jure Leskovec, Stanford University

Model can be applied at arbitrary proximity-depth (hops)
1. Nodes have embeddings at each layer
2. Layer 0 representations are the features of a node
3. Layer 1 representation gets message from nodes

1-hop away

https://towardsdatascience.com/introduction-to-message-passing-neural-networks-e670dc103a87

Simple Message Passing: Update Function

105Diagram from Jure Leskovec, Stanford University

1. Pool messages
a. averaging works

2. then apply a neural
network

https://towardsdatascience.com/introduction-to-message-passing-neural-networks-e670dc103a87

Neural Message Passing Example

106

t=1

diagram source

Simple message
passing

https://towardsdatascience.com/introduction-to-message-passing-neural-networks-e670dc103a87

Neural Message Passing Example

107

t=1

diagram source

Message is sum of
neighborʼs hidden
states

https://towardsdatascience.com/introduction-to-message-passing-neural-networks-e670dc103a87

Neural Message Passing Example

108

t=2

diagram source

Update function is
the average of
current hidden
state and message

https://towardsdatascience.com/introduction-to-message-passing-neural-networks-e670dc103a87

Graph Convolutional Networks

109

Standard Convolutional Neural Networks (CNN)

110slide from Thomas Kipf, University of Amsterdam

Graph Convolutional Neural Networks (GNN)

111
*slide from Thomas Kipf, University of AmsterdamPaper: Semi-supervised Classification with Graph Convolutional Networks

https://arxiv.org/pdf/1609.02907.pdf

Graph Convolutional Neural Networks (GNN)

112Paper: Semi-supervised Classification with Graph Convolutional Networks

https://arxiv.org/pdf/1609.02907.pdf

Graph Convolutional Neural Networks (GNN)

113Paper: Semi-supervised Classification with Graph Convolutional Networks

https://arxiv.org/pdf/1609.02907.pdf

Relationships between CNNs and GNN

114

◎ A convolutional neural network (CNN) is a special case of a graph neural
network

◎ While the size of the filter is pre-defined in a CNN, a GNN takes in nodes with
arbitrary degree (neighboring nodes)

Attention-based Graph Neural Networks

115

Introducing Transformers

116

◎ Transformers architectures have
shown state-of-the-art
performance in many NLP and
vision tasks

◎ adopts the mechanism of
self-attention, differentially
weighting the significance of each
part of the input data

◎ not all nodeʼs neighbors are equally
important
○ Attend to the relevant

neighbors

Paper: Attention is all you Need

https://arxiv.org/pdf/1706.03762.pdf

Transformers are Graph Neural Networks

117
Blogpost: Transformers are Graph Neural Networks

https://graphdeeplearning.github.io/post/transformers-are-gnns/

Transformers are Graph Neural Networks

118Blogpost: Transformers are Graph Neural Networks

https://graphdeeplearning.github.io/post/transformers-are-gnns/

Graph Attention Networks

119
Paper: Graph Attention Networks

◎ Certain neighbors to a node are
more important than others to
its understanding

◎ Learn attention weights to
identify the relevancy of nodes

◎

https://arxiv.org/pdf/1710.10903.pdf

Graph Neural Networks with Attention

120
*slide from Thomas Kipf, University of Amsterdam

Paper: Graph Attention Networks

◎ Compared to GCNs
○ More expressive than GCNs
○ Slower than Graph Convolutional

Networks

https://arxiv.org/pdf/1710.10903.pdf

Training GNNs on Unsupervised and Supervised Tasks

121

Tasks to Learn Node Embeddings with GNNs

122

Unsupervised Objectives
Use graph structure as supervision

◎ Predict Node Similarity
○ Random Walk
○ DeepWalk

◎ Link prediction task
○ Hold-back edges and try to predict

Supervised Objectives
Externally labeled data

◎ Node classification
◎ Graph classification

Graph Representations for
Recommender Systems
Ying Xiao

132

Graph embeddings give a dense representation per user and item;
how do we incorporate them into recommender systems?

133

◎ Task: recommend relevant items to users.
◎ Web scale: >106-109 items, >109 users.

Applications: social media/networks, search, e-commerce,
ads, video streaming, etc.

Web Scale Recommender System

134

Topic for this session

◎ How to integrate graph embeddings into web scale
recommendation systems.

◎ Not discussed: methods that examine
paths/neighbourhoods to directly provide
recommendations or refine embeddings.

◎ See also: A Survey on Knowledge Graph-Based
Recommender Systems
○

135

https://arxiv.org/abs/2003.00911
https://arxiv.org/abs/2003.00911

◎ Candidate Generation: retrieval task.
◎ Ranking models: high precision ranking task.

Two-stage

136

Ranking models

137

Large trainable
embedding
already

Paper: Persia: An Open, Hybrid System Scaling Deep Learning-based Recommenders up to 100 Trillion Parameters

https://arxiv.org/abs/2111.05897

Large sparse features / large trainable embedding tables

◎ ID features – ids of items a user has previously found
relevant – lead to huge tables (109-1012 params).

◎ Only recently easily trainable on GPU in torch
(torchrec) and TensorFlow (NVidia HugeCTR SOK).

138

https://pytorch.org/torchrec/
https://developer.nvidia.com/blog/accelerating-embedding-with-the-hugectr-tensorflow-embedding-plugin/

Trainable embeddings: significant infrastructure investment

139Paper: Software-Hardware Co-design for Fast and Scalable Training of Deep Learning Recommendation Models

https://arxiv.org/abs/2104.05158

Pre-trained embeddings & end-to-end trained embeddings

Advantages:
◎ Infrastructural simplicity.
◎ Applicability to many tasks.
◎ Use data from different tasks.

Disadvantages
◎ Lack of task specificity (i.e., performance).
◎

140

Pre-trained and end-to-end trained embeddings are NOT
mutually exclusive. You probably want both for key
applications!

141

Inductive bias: pairwise interactions between item + user

142Paper: CuMFSGD: Fast and Scalable Matrix Factorization

https://arxiv.org/abs/1610.05838

Bilinear product

Prediction: <user vectori , item vectorj>

Key properties:
◎ Linear in user vectori , linear in item Qj.
◎ Output is a single scalar.

Intuition: capture interaction in mathematically simple,
but still expressive way.

143

DLRM: Gram matrix of all embeddings for entities.

144
Paper: Deep Learning Recommendation Model for Personalization and Recommendation Systems

Concat pre-trained
embedding here.

https://arxiv.org/abs/1906.00091

DLRM: basic idea

Start with many embeddings per user/item pair:
◎ Project them to the same dimension.
◎ Compute all inner-products of these embeddings.
◎ Concatenate n choose 2 unique ones with dense

inputs.

This makes it easy to add new pre-trained embeddings.

145

Deep and Cross Network v1 and v2

1. Capture interaction with more than a single scalar.
2. Stack the interaction layers.

Paper: Deep & Cross Network for Ad Click Predictions

Paper: DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems

146

https://arxiv.org/abs/1708.05123
https://arxiv.org/abs/2008.13535

Interaction layers: more than a single scalar

147
Component-wise product

Practical Consideration 1: Normalization

◎ Most DNNs assume that neurons are approximately
mean 0, variance 1 (e.g., batch norm, layer norm, MLP
layer initializations).

◎ Try normalizing pre-trained embeddings before
feeding into model

148

Paper: TwHIN: Embedding the Twitter Heterogeneous Information Network for Personalized Recommendation

https://arxiv.org/abs/2202.05387

Practical Consideration 2: Space/IO Efficiency

Embeddings can be made very space efficient:
◎ Compress with product quantization (PQ).
◎ Large compression ratios (>75%) without affecting

downstream task metrics
◎ Fast implementations in Faiss; decoding trivial.

Paper: Product Quantization for nearest neighbor search

149

https://github.com/facebookresearch/faiss
https://lear.inrialpes.fr/pubs/2011/JDS11/jegou_searching_with_quantization.pdf

Product Quantization

150

PQ effect on downstream task

151

Practical Consideration 3: Drift Mitigation

◎ Over time, we want to retrain the model, but at time
t+1, donʼt want embedding too different from time t.

◎ Principled approach – constrain difference between
embeddings at different times.
○ Works well, but doubles memory.

◎ More efficient approach – initialize training at time t+1
with parameters from time t.

◎

152

Practical Consideration 4: Redundancy with pre-existing features

◎ For pre-existing models, graph embeddings may be
very redundant with pre-existing features.
○ Especially when there lots of hand-crafted features

with lots of data.
◎ Limits model improvements when adding graph

embeddings.
○

153

Redundancy with pre-existing features

This is actually a desirable situation:
1. Add graph embedding.
2. Run feature selection on pre-existing features.
3. Remove many of them (85% for Twitter use case).
4. Reclaim the IO/compute budget for other model

improvements such as scaling up model architecture.

154

History Aggregation

◎ Idea: aggregate embeddings of relevant items per user
◎ Aggregation types: pooling, RNNs, attention.
◎ Broad in scope: many research papers.
◎ Example: DKN

○ After embedding, run attention between the
candidate item and items previously relevant to a
user.

155Paper: DKN: Deep Knowledge-Aware Network for News Recommendation

https://arxiv.org/abs/1801.08284

Path dependent methods

◎ Extract paths, run rnn over paths, pool for prediction.

156Paper: Explainable Reasoning over Knowledge Graphs for Recommendation

https://arxiv.org/abs/1811.04540

Summary: graph embeddings in ranking models

◎ Complementary to large trained embeddings, though
typically *much* easier to get started with.

◎ Need to have both user and item representations.
◎ Plethora of practical tricks to make it work better.

157

Candidate Generation

158

Cand Gen Family Definition Example

Item-based
(content-based)

Using item similarity, query
similar items to what a user
prefers.

User faves travel tweets, so
suggest similar travel
tweets.

Collaborative filtering Suggest preferred items from
similar users to a user.

User A and B are similar, A
likes travel tweets, so
suggest travel tweets to B,

Heuristic and model based candidate generation

◎ Many candidate generation strategies are heuristics
(e.g., most popular/recent items).

◎ Pre-trained embeddings fall into a family of ML model
based techniques.

159

Model-based Candidate Generation

Approximate nearest neighbor (ANN) based dense retrieval
◎ Retrieval from an index of items, or
◎ RS Models factored into two towers:

160

Figure from Yi et al.,
Sampling-bias-corrected neural
modeling for large corpus item
recommendations, 2019.

PrecomputePrecompute

Replace with ANN

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/6c8a86c981a62b0126a11896b7f6ae0dae4c3566.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/6c8a86c981a62b0126a11896b7f6ae0dae4c3566.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/6c8a86c981a62b0126a11896b7f6ae0dae4c3566.pdf

Plug and Play

Adding a graph embedding to candidate generation
system tends to be straightforward e.g.,
◎ Take your embeddings, put them in an ANN index,

query the ANN index at retrieval time.
◎ Add graph embedding to a two-tower model.

Packages: HNSW, Faiss

161

https://github.com/nmslib/hnswlib
https://github.com/facebookresearch/faiss/wiki/Faiss-indexes

k-NN retrieval “Locality implies similarity”

◎ We retrieve items that are close to a user in embedding
space.

◎ Retrieved items are close in embedding space too.
◎ => Retrieved items are similar to each other.

When items are too similar→ issues with diversity,
multi-modal interests, polysemy in search.

162

Deep Personalized and Semantic Retrieval (DPSR)

Idea: query the kNN index with
k embeddings.

Paper, Towards Personalized and
Semantic Retrieval: An End-to-End

Solution for E-commerce Search via
Embedding Learning

163

Replace with ANN

https://arxiv.org/abs/2006.02282
https://arxiv.org/abs/2006.02282
https://arxiv.org/abs/2006.02282
https://arxiv.org/abs/2006.02282

Given an item embedding, build a user representation:
◎ Cluster previously relevant items.
◎ For each cluster, compute the medoid (not centroid).
◎ For each user, weight the clusters with time decay.

To generate candidates: retrieve from ANN based on 3
medoids, importance sampled.

Pinnersage

164
Paper: PinnerSage: Multi-Modal User Embedding Framework for Recommendations at Pinterest

https://arxiv.org/abs/2007.03634

PinnerSage Results

165

Item Clustering
Multiple Queries

Tuning time
decay

k-NN Embed: Multiple querying on top of a kNN system

◎ (Globally) cluster all the items in your embedding.
◎ Model each user as a mixture over item clusters:

◎ Idea: data per user is sparse, so use data from adjacent
users since we know theyʼre similar.

166Paper: kNN-Embed: Locally Smoothed Embedding Mixtures For Multi-interest Candidate Retrieval

https://arxiv.org/abs/2205.06205

k-NN Embed:

167

Userʼs preference over clusters:
smooth this with neighboring
usersʼ preference over clusters.

ANN retrieval – query from the
centroid of this user in the cluster
smoothed with centroids of
neighbouring users

k-NN Embed: Expand ANN search by using similar users

168

k-NN Embed: Improvements in diversity

169

Summary: graph embedding in candidate generation

◎ Plays nice with ANN based candidate generation.
◎ Multiple querying, and more sophisticated techniques,

allow us increase diversity in retrieved candidates.

170

Thanks!
Any questions?

171

Come chat with us about our KDD 2022 Applied Data Science Paper!

Paper: TwHIN: Embedding the Twitter Heterogeneous Information Network for Personalized Recommendation

Poster Session: Monday, August 15, 7:00 pm to 8:30 pm.

Oral: Thursday, August 18, 10:00 AM-12:00 PM (~10:50 AM), Room 3 (Graph Learning & Social Network).

https://arxiv.org/abs/2202.05387

