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Intro and Motivation

Aria Haghighi



Recommender Systems

Technical Definition

Given candidate items (i), rank items by
relevance for a given user u’s preferences
CTR model: Relevance is probability of
“engagement” (click, watch, follow, like,
etc.)

Caveats

Other formulations and variations
exist (e.g, LTV, non-personalized, etc.)
Production systems have many more
components and rules




Recommender Systems

Many Applications For Different “items”

Ads ranking [Ads]

Account recommendations for social networks
[Suggested User]

Content recommendation for streaming
services (e.g, Netflix, Disney+, etc.) [Videos]

Importance
Recommender systems are typically the ML

models closest to business objectives (e.g, Ads
revenue, growing social graph, watch time)




Approaches To Recommender Systems

ST

Content-Based
ltem-item similarity. Useful
when few engagements
e \Vector space document
model
e Transformer-based
representations of items
(E.g, BERT or CLIP)

7| B collaborative Filtering (CF)
Qls 2 Leverage (user, item)
engagement behavior
R 1 0 e Matrixfactorization
e Predictive models (i.e,
DLRM)

Production systems are usually mixture of
both approaches

This tutorial focused on collaborative
filtering, but some content-based extensions




Recommender System Challenges

Sparsity and Cold-Start

CF works reasonably well when there is

(user, item) density

Cold-start: When user or item has

little-to-no past engagements to power CF.
Prevalent for sparse engagement
targets (e.g, performance ad actions
like e-commerce purchases)

This tutorial: Pre-trained graph

embeddings can address cold-start and

sparse recommendation problems




Tutorial In A Nutshell

Build graph of interactions between users, items, and other domain
entities (e.g, ads, advertisers, content tags, etc.)
Embed all graph entities

[-0.44,0.29, ...-0.53]

[0.92,-0.21, ... -0.65]
B 0.29,-0.11,...-0.41]

- [-0.13,0.57, ... 0.69]
8]




Tutorial In A Nutshell

These pre-trained entity embeddings can be used for many different
tasks involving business entities
Entity classification (e.g, account classification)
Recommendation candidate retrieval
Inputs to recommendations ranking models

Classification Retrieval Ranking

Actor or
-/ Musician? P(engage | -, )
[0, 2
13, 0-57’ i o [013, 0.5, S, 0.91, 0
.69] -13: 0.57 2., 0-69] '49]



Homogenous Graph
Representation

Aria Haghighi

11



Homogeneous Graph Representations

Homogeneous Graphs

Single node type and single edge type

Twitter

users follow other users

Running Application Example

homogeneous

Nodes represent users and (single) edge

type for user following relation
Account recommendation: What account

should a user follow?

Future sections will generalize to
heterogeneous graphs (multiple edge

types)

12



Homogeneous Graph Representations
Node Embeddings

Represent each graph node u by a vector,
or embedding, f(u) in R"

Learn fso that “similar” nodes (u, v) map
to vectors f(u) and f(v) close together

ann

13



Homogeneous Graph Representations

Why bother with embeddings?

Translate complex relational
data into representation more
amenable for Deep ML models

Querying for “similarity” is
more efficient leveraging
approximate nearest neighbor
(ANN) algorithms

Ranking
P(engage| [Q], )
0.
.69]
Retrieval

14



Random Walk Approaches

Defining Objective

Very similar to word2vec
Given nodes “similar” to node u, denoted S(u), assign node embedding
to maximize probability of this “observed” data

P(S(u)|u) = H P(v|u)

veS(u

T exp (f(u)Tf(v))
B D oV €XD (f(u)Tf(v’))

veS(u)




Random Walk Approaches

Two Modeling Choices

How do we choose “similar” nodes S(u)?
Determines kind of similarity captured by embeddings
How to avoid computing denominator of P(v | u)?

> expf(u)’ f(v)

eV

16



Random Walk Approaches

DeepWalk (KDD ‘14, Perrozi et. al.)

Similar Nodes S(u): Sample fixed-length random walks from
each node. S(u) are nodes in a window around u weighed by
window co-occurrence in sampled walks

O—0—-0 S(u)=1{

0—0—0 v(2),t (3),b (1
}
0-0-0

[Citation] 17
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Random Walk Approaches

DeepWalk (KDD ‘14, Perrozi et. al.)

© Model P(v| u) using hierarchical softmax
© Create binary tree, where leaves are nodes V.

a. Each binary branch has a probability of going left (or

right) given input embedding, f(u). Sigmoid
b. P(v|u)is product of binary choices in path to v /
n _ T
P L P(left|f(u)) = o (Wn2f(u))
1

— P(left|f(u))

/\ /2\‘ P(right|f(u))


https://arxiv.org/abs/1403.6652?source=post_page---------------------------

Random Walk Approaches

Recap of DeepWalk (KDD ‘14, Perrozi et. al.)

©
©

Learn embeddings of dimension d for each node inV

a. Thisentailsd |V | parameters to learn (e.g, embedding table)

Sample short random walks for each node, use context window

frequency for similarity multiset S(u)

Hierarchical-softmax to model P(v|u) as sequence of binary decisions

conditioned on embedding of u

a. Canuse arbitrary coding mechanism, but Huffman encoding used
originally (what benefit?)

b. Thisaddsd (|V|-1) parameters (why?)

19
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Random Walk Approaches

node2vec (KDD ‘16, Grover & Leskovec)

©

Similar Nodes S(u): Similar to DeepWalk, but richer parametrization
of random walks to allow flexibility

Breadth-first search (BFS) and Depth-First search (DFS) yield a
microscopic (local) and macroscopic (global) view of the graph

respectively O
S1

[Figure from node2vec paper]

20
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Random Walk Approaches

node2vec (KDD ‘16, Grover & Leskovec)

© Biased Random Walk: Introduce hyper-parameters p and g which will allow you
to interpolate between a more BFS vs DFS-like random walk
© Imagine we just traversed (s, u) edge in our random walk. Compute 2nd order

transition probabilities P(t | s, u)

a(t, u)
P(t|s,u) =
(. w 2 teN(u) @t ) (p~" t=u[Retum)

a(t,u) =<1 d(t,u) = 1 [Adjacent]
\q_l d(t,u) = 2 [Wander]

21
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Random Walk Approaches

node2vec (KDD ‘16, Grover & Leskovec)

©@ Small p (large p!) is more BFS-like

©

(p~! ¢ = u [Return]

since encourage walk to stay close aft,u) = 1 d(t, u) = 1 [Adjacent]
to start \q_l d(t,u) = 2 [Wander|
Small g (large ) is more DFS-like
since encourage walk to wander
further away

Recover DeepWalk sampling for

p=q=1

22
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Random Walk Approaches
node2vec (KDD ‘16, Grover & Leskovec)

SkipGram Objective
Negative Sampling: Approximate denominator by sampling from
distribution, D(u), over “negative” contexts for node u
Noise Contrastive Estimation (NCE): optimize probability of true
vs false “negative samples”

Z lgo(f(u) fv)+ ) lga (—f(u)! £(v))
vES(u v'eD(u

23
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Random Walk Approaches
Recap

Embed graph nodes by preserving pairwise node similarity, where node
similarity is defined by co-occurence of nodes in a random walk

© DeepWalk samples short random walks uniformly, but node2vec has
hyper-parameters to encourage walks to interpolate between DFS and
BFS (to capture macro- and micro- concepts of similarity)

© Forthe user following graph, this yields user embeddings capturing
similar follow behavior
a. Similar Accounts: Retrieve nearest neighbors of a given user’s

embedding

b. Account Classification: Build a model with user embeddings as

input

24



Higher-Order Methods

Instead of obtaining “similar” nodes via random walk sampling, can we
directly model graph properties?
© Graph Proximity
a. First-Order (L1): pairwise proximity between two nodes that are
connected (typically an edge weight)
b. Second-Order (L2): pairwise proximity between two nodes, not
connected but sharing neighbors

m 0.53 u

L1
L2 25



Higher-Order Methods
Large-Scale Information Network Embedding (LINE) [WWW ‘15, Tang et. al.]

Define an empirical measure of First-Order proximity and a model-based
prediction. We want to tune embedding table to bring empirical close to
model. Note: Only applies to undirected graphs.

Empirical Model
P(U, U) X Wy, v P(“a U) — 0<f<u>Tf(v))
Proportional to edge-weight Sigmoid of embedding dot

(or 0 otherwise) product

26



Higher-Order Methods
Large-Scale Information Network Embedding (LINE) [WWW ‘15, Tang et. al.]

Objective function to minimize KL-divergence from empirical distribution to
model-base prediction

01 X Z wuﬂ}lg P(u, ?J)
(u,v)EE

27



Higher-Order Methods
Large-Scale Information Network Embedding (LINE) [WWW ‘15, Tang et. al.]

Second-Order proximity: Define a directed graph over V where edge weights

represent neighborhood similarity of nodes (e.g, jaccard between two nodes
neighbors)

© Use asecondary embedding, f’, for embedding a “context” node (similar to
word2vec)

Empirical Model

X Wy 1 Tel
b N , oy — () ' (v))
(U‘u> ZU/ Wy, o Ploju) > exp(f(u) £ (v")

)

28



Higher-Order Methods
Large-Scale Information Network Embedding (LINE) [WWW ‘15, Tang et. al.]

Define a KL-divergence loss from the empirical second-order proximity
distribution to the model-based one
© NOTE: Denominator of model-based term involves intractable summation

02 X Z ijfulg P(U‘U)
u,v

29



Higher-Order Methods

Large-Scale Information Network Embedding (LINE) [WWW ‘15, Tang et. al.]

Negative sampling (like node2vec) to sample “negative” edges for model-based

term denominator.

© Learn embeddings for O, and O, independently and concatenate
© Rather than SGD with raw edge weights, sample edges w/ Walker Alias method
© Experiments on text networks (co-occurring terms) in Wikipedia analogy
a. 2nd order helps
| Algorithm [ Semantic (%) | Syntactic (%) | Overall (%) | Running time |
GF 61.38 44.08 51.93 2.96h
DeepWalk 50.79 37.70 43.65 16.64h
SkipGram 69.14 57.94 63.02 2.82h
LINE-SGD(1st) 9.72 7.48 8.50 3.83h
LINE-SGD(2nd) 20.42 9.56 14.49 3.94h
LINE(1st) 58.08 49.42 53.35 2.44h
LINE(2nd) 73.79 59.72 66.10 2.55h




Higher-Order Methods
GraRep [WWW ‘15, Cao et. al.]

Can represent a single-step dynamics of a graph walk starting from u using

matrix algebra:
Al,,

© Similarly, can represent probability k-step walk starting from u will end at node
v by iterative matrix multiplication

Pr(vlu) = (Ak>u,fu

Normalized transition probs One-hot vector on node u

31



Higher-Order Methods
GraRep [WWW ‘15, Cao et. al.]

Similar to LINE, formulate “empirical” and “model” quantities to represent
transition probabilities for u > v for a k-step uniform random walk. Use a
separate source-destination embedding table (f and f°):

Empirical Model
exp(f(u)" '(v))
>y exp(f(u) £(v))

32
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Higher-Order Methods
GraRep [WWW ‘15, Cao et. al.]

Define loss over KL-divergence between “empirical” k-step transition
probability and model-defined. Using negative sampling to approximate model
denominator (ala node2vec), and skipping some math

O (vlu) = AR g o (F/(0)Tf(u))+
3 Z Ay go(—f' () £ (u)

anstant . v ED

involving negative
sampling and
number vertices

33




Higher-Order Methods
GraRep [WWW ‘15, Cao et. al.]

Differentiating wrt f(v) 'f(u) and setting to 0, we obtain

f/(0) f(u) =g

© Equivalent to the matrix factorization problem A*=(F’)"F
a. FandF’ are matrices where rows are node embeddings
b. A*represents matrix of right-hand-side expression

34



Higher-Order Methods
GraRep [WWW ‘15, Cao et. al.]

Similar to GLOVE where word embeddings becomes matrix-factorization

Similar pro/cons versus SkipGram word embeddings in terms of
memory vs compute trade-offs

© Compute representations for different k lengths and concatenate

Table 3: Results on 20-NewsGroup

200 samples all data
Algorithm 3NG(200) | 6NG(200) | 9NG(200) | 3NG(all) | 6NG(all) | ING(all)
GraRep 81.12 67.53 59.43 81.44 71.54 60.38
LINE (k-max=0) 80.36 64.88 51.58 80.58 68.35 52.30
LINE (k-max=200) 78.69 66.06 54.14 80.68 68.83 53.53
DeepWalk 65.58 63.66 48.86 65.67 68.38 49.19
DeepWalk (192dim) 60.89 59.89 47.16 59.93 65.68 48.61




Higher-Order Methods
Recap

Higher-order methods take “observed” graph properties (proximity
structure or transition probabilities) and fit node embeddings as part of a

model to match empirical properties
© Different methods encode different graph properties, but we see consistent

value in encoding non-local structure.

36



Some Other Things To Check Out

Unsupervised Component Unsupervised Component
© Structural Deep Network (Local structure preserved cost ‘L‘f_c_?'_’_‘_’t‘_‘f‘_’f?_"_’_e_‘_e_’!'_ef‘_‘f‘j’ff
. 2 (000 000) (000000 %
Embeddlng (SDN E) E E parameter sharing ' E

a | |- > t b~ )
3 (000-00] ! . 000--00]
a. [KDD ‘16, Wa nQ'. et. al.-l : I SupervisedComponelilt ¥ I ’

(@Iobal structure preserved cost)

b. Jointly learn first- and 5 | . -~ BP0 A R— — g
second-order proximity at R
different auto-encoder layers  »* ,

© Hierarchical Representation n ([G00 _088) rmretm | (06 668) -

Learning For Networks (HARP) vered vered

a. [AAl‘18, Chen et. al]

b. Embed sequence of “coarser”
graphs and “warm start” finer

grained graph embedding



https://www.kdd.org/kdd2016/papers/files/rfp0191-wangAemb.pdf
https://arxiv.org/abs/1706.07845

Heterogeneous Graph
Representation

Ahmed El-Kishky

38



Homogeneous vs Heterogeneous Graphs

Homogeneous Graphs

Single node type and single edge type
Twitter
users follow other users

Heterogeneous Graphs

Multiple node and/or edge types
Twitter:
users follow other users
o users fave tweets
o users reply to tweets

homogeneous

heterogeneous

39



Heterogeneous Graphs

A heterogeneous graph is defined as:
G=(V,E,R,T)
Nodes with node typesvi € V
Edges with relation types (vi,r,v[]) € E
Node type T(vi)
Relationtyper € R

40



Heterogeneous Graphs in the Wild

Social Networks (e.g., Twitter, Facebook)
Bibliographic networks (e.g., DBLP, ArXiv, Pubmed)
User-ltem Engagement (e.g., e-Commerce, search engines)

World Wide Web
Biological networks

user item

e-Commerce

bibliographic

QO content Consumers

Retweet @ Like ™ Report

social
41



Heterogeneous Information Network
Embeddings

42



Heterogeneous Star Network Embedding

Star-schema network

Author scores (. OO0 00000 OO o O W
Papers, keywords, authors, venues =
Embed the center node type reper embedeing X

Learn paper representation /WM
Predict authors for anonymized

bapers ode type (000000 | 000c00) xxxxx

embedding
Dot (author-emb, paper-emb)

Mean pooling

Keywords References Venue

Node embedding

Star-schema bibliographic network Author identification problem

Paper: Task-Guided and Path-Augmented Heterogeneous Network Embedding for Author Identification 43



https://web.cs.ucla.edu/~yzsun/papers/WSDM17_Chen.pdf

Heterogeneous Star Network Embedding

Author identification performance comparison.

Models MAP@3 MAP@10 Recall@3 Recall@10
LR 0.7289 0.7321 0.6721 0.8209
SVM 0.7332 0.7365 0.6748 0.8267
RF 0.7509 0.7543 0.6921 0.8381
LambdaMart 0.7511 0.7420 0.6869 0.8026
_Task-spec1ﬁc

0.7722
0.7563
0.8113

Pre-train+Task.
Network-general
Combined

Top ranked authors by models for queried keyword “vari-

ational inference"

Task-specific Network-general Combined

Chong Wang Yee Whye Teh Michael I. Jordan
Qiang Liu Mohammad E. Khan Yee Whye Teh
Sheng Gao Edward Challis Zoubin Ghahramani
Song Li Ruslan Salakhutdinov ~ John William Paisley
Donglai Zhu Michael I. Jordan David M. Blei

Neil D. Lawrence Zoubin Ghahramani Max Welling
Sotirios Chatzis Matthias Seeger Alexander T. Ihler

Si Wu David B. Dunson Eric P. Xing

Huan Wang Dae I1 Kim Ryan Prescott Adams
Weimin Liu Pradeep D. Ravikumar ~ Thomas L. Griffiths

Paper: Task-Guided and Path-Augmented Heterogeneous Network Embedding for Author Identification 44



https://web.cs.ucla.edu/~yzsun/papers/WSDM17_Chen.pdf

Multi-view Network Embedding

Real-world graphs have many edge types
between nodes.
Multiple relationships means multiple
views
Each relationship typeis a view
On Twitter:
Users follow other users
Users retweet other users
Users favorite tweets
Users reply to tweets

View 1 View 2 View 3

An example multi-view network with three views.
Each view corresponds to a type of proximity between nodes,
which is characterized by a set of edges. Different views are
complementary to each other.

Paper: An Attention-based Collaboration Framework for Multi-View Network Representation Learning: https://dl.acm.org/doi/pdf/10.1145/3132847.3133021 45



https://dl.acm.org/doi/pdf/10.1145/3132847.3133021

Multi-view Network Embedding

Multi-view View-specific Node Voting Weights
Network Representations of Views Labeled Data
Nodes have view-specific embeddings & e S P Robust Node

Regularization across views

. Representations
Voting
Robust embedding from attention across S

different views’ embeddi ngs B Overview of the proposed approach. The collabo-
ration framework (yellow parts) preserves the node proxim-
ities of different views with a set of view-specific node rep-
resentations, which further vote for the robust representa-
tions. During voting, we learn the weights of views through
an attention based method (blue parts), which enables nodes
to focus on the most informative views.

Paper: An Attention-based Collaboration Framework for Multi-View Network Representation Learning: https://dl.acm.org/doi/pdf/10.1145/3132847.3133021 46
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Multi-view Network Embedding

Node classification task

Paper: An Attention-based Collaboration Framework for Multi-View Network Representation Learning: https://dl.acm.org/doi/pdf/10.1145/3132847.3133021

MVE-NoAttn

MVE

Category Algorithm DBLE - -~ e n
Macro-F1 Micro-F1 | Macro-F1 Micro-F1 | Macro-F1 Micro-F1
Single View LINE 70.29 70.77 34.49 54.99 20.69 24.70
node2vec 71.52 72.22 34.43 54.82 21.20 25.04
node2vec-merge 72.05 72.62 29.15 52.08 21.00 24.60
node2vec-concat 70.98 71.34 32.21 53.67 21.12 25.28
CMSC - - - - 8.97 13.10
Multi View MulfciNMF 51.26 59.97 18.16 51.18 5.19 9.84
M PPM 4 34 6 6 ]() ) 4
MVE-NoCollab 72.40 28.03

Link prediction classification task

Quantitative results on the link prediction task.
MVE achieves the best results through the collaboration
framework and the attention mechanism.

| Category | Algorithm | Youtube | Twitter |

Single View LINE 85.31 64.18
node2vec 88.71 78.75
node2vec-merge 90.31 81.80
node2vec-concat 92.12 75.00

CMSC 74.25 -

R MultiNMF 68.30 -
Multi View MultiSPPMI 86.35 53.95
MVE-NoCollab 89.47 73.26
MVE-NoAttn 93.10 82.62
MVE 94.01 84.98

47
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Heterogeneous Network Embeddings via Deep Architectures

Heterogeneous information network consisting of linked text and images
Objective: Makes the embeddings of linked nodes closer to each other
Edge Types

Image-to-Image

Text-to-Image

Text-to-Text

Images for mh 17 Report images Malaysua Airlines Flight 17 black box findings consistent with .

gl Www.cbsnews conmV/.. /malaysia-airlines-flight-17-black

2 days ago

. Frustration grows in search for remaining Malaysia Airlines Flight
Il 17 victims .. MH17 investigation frustrated

News for mh 17

Armed mission to MH-17 crash site 'not realistic":
Dutch PM

Reuters - 21 hours ago

More misery for MH17 families as fighting erupts around v AMSTERDAM (Reuters) - The Netherlands, Australia and Malaysia
m www telegraph.co.uk > ... » Europe » Ukraine euronews have ruled out sending an international armed mission to secure the
2 21 hours ago Stan
S A multinational team investigating the downing of Malaysia
More images for mh 17 Bl Airlines Flight MH17 was forced to delay its More news for mh 17

Images Videos Text

Illustration of the heterogeneity of different data sources describing the same topic “MH 17”.

Paper: Heterogeneous Network Embeddings with Deep Architectures: https://dl.acm.org/doi/10.1145/2783258.2783296 48



Heterogeneous Network Embeddings via Deep Architectures

Classifications

Clustering

|
Supervised Task-specific
Learning s )

Off-the-shelf Learning Link Prediction

. Algorithms

- - Retrieval
mPd ‘ J
2

Recommendation

,
.

Heterogeneous Networks Uniformed Vector-representation Final Tasks

The flowchart of the proposed Heterogeneous Network Embedding (HNE) framework.

Paper: Heterogeneous Network Embeddings with Deep Architectures



https://dl.acm.org/doi/10.1145/2783258.2783296

Heterogeneous Network Embeddings via Deep Architectures

[ prediction layer ] c:g

TPRPPOOOy B0 B0 00 SO
[ Li beddi ] = [ L'] beEd‘ ] = [ Li beddi ]
..... g T g L L g PR

: [ ConvNet ]c=:>[ ConvNet ] = : FC layer R FClayer <= FC layer

ﬁ . 0 Nonlinear ﬁ 0 ﬁ 3 Nonlinear ﬁ u ﬂ a Nonlinear ﬁ . 0

embeddings san S g e embeddings nan . i S embeddings

. 28 A T S| ¢ 8 i g g T
[ ConvNet }2:9[ ConvNet ] = [ ConvNet ] [ FC layer ] L= [ FC layer H FC layer ]
. weights sharing . -weights sharing- , _ -weights sharing- , weights sharing )

Pairwise nodes from f‘x‘ Ay
networks : ¢ " . S

The overall architecture of HNE . The same color indicates the shared weights. The arrows are directions of forward feeding and
back propagation.

Paper: Heterogeneous Network Embeddings with Deep Architectures 50
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PTE: Predictive Text Embeddings via Large-scale
Heterogeneous Text Networks

© Takes an unstructured text corpus and transforms into a heterogeneous text network
o  word-to-word, word-to-document, document-to-label edges
© Embed nodes of induced heterogeneous information network

null Text representation, e.g., word and document

representation, ... degree document text doc_1 text
null Deep learning has been attracting increasing information doc 2 information labe]_l
attention ... node /
null A future direction of deep learning is to integrate e network\ t t/vord network doc_3 network — label 2
psabeie tata edg o \ = word doc_4 word label 3
labial The Skip-gram model is quite effective and (%ssiﬁ(‘ation
efficient ... . y ’
: o embed ng classification classification
label Information networks encode the relationships
between the data objects ...
label document (a) word-word network (b) word-document network (c) word-label network
Text corpora Heterogeneous text network

Illustration of converting a partially labeled text corpora to a heterogeneous text network. The word-word co-
occurrence network and word-document network encode the unsupervised information, capturing the local context-level and
document-level word co-occurrences respectively; the word-label network encodes the supervised information, capturing the
class-level word co-occurrences.

Paper: Predictive Text Embeddings via Large-scale Heterogeneous Text Networks



https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/fp292-Tang.pdf

PTE: Predictive Text Embeddings via Large-scale
Heterogeneous Text Networks

Data: Gyw, Gwd, Gwi, number of samples T, number of
negative samples K.
Result: word embeddings .
while iter < T do
e sample an edge from F,, and draw K negative edges,
and update the word embeddings;

e sample an edge from F,,4 and draw K negative edges,
and update the word and document embeddings;

e sample an edge from F,,; and draw K negative edges,
and update the word and label embeddings;

end

Paper: Predictive Text Embeddings via Large-scale Heterogeneous Text Networks
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PTE: Predictive Text Embeddings via Large-scale

Heterogeneous Text Networks

Long Document Text Classification

20NG Wikipedia IMDB

Type Algorithm Micro-F1 | Macro-F1 | Micro-F1 | Macro-F1 | Micro-F1 | Macro-F1
Word BOW 80.88 79.30 79.95 80.03 86.54 86.54
Skip-gram 70.62 68.99 75.80 75.77 85.34 85.34
PVDBOW 75.13 73.48 76.68 76.75 86.76 86.76
Unsupervised PVDM 61.03 56.46 72.96 72.76 82.33 82.33
Embedding LINE(Gyw) 72.78 70.95 T1:12 Tl 12 86.16 86.16
LINE(Gwa) 79.73 78.40 80.14 80.13 89.14 89.14
LINE(Gyy + G 78.74 77.39 79.91 79.94 89.07 89.07
CNN 78.85 78.29 79.72 79.77 86.15 86.15
CNN (pretrain) 80.15 79.43 79.25 79.32 89.00 89.00
o PTE(Gw1) 82.70 81.97 79.00 79.02 85.98 85.98
greglijge PTE(Gww + Gui) 83.90 83.11 81.65 81.62 89.14 89.14
PREARE T PTE(Guwa + Gut) | 84.39 83.64 82.29 82.27 89.76 89.76
PTE(pretrain) 82.86 82.12 79.18 79.21 86.28 86.28
PTE(joint) 84.20 83.39 82.51 82.49 89.80 89.80

Paper: Predictive Text Embeddings via Large-scale Heterogeneous Text Networks
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PTE: Predictive Text Embeddings via Large-scale
Heterogeneous Text Networks

Short Document Text Classification

DBLP MR Twitter

Type Algorithm Micro-F1 | Macro-F1 | Micro-F1 | Macro-F1 | Micro-F1 | Macro-F'1
Word BOW 75.28 71.59 71.90 71.90 75.27 75.27
Skip-gram 73.08 68.92 67.05 67.05 73.02 73.00
PVDBOW 67.19 62.46 67.78 67.78 71.29 71.18
Unsupervised PVDM 37.11 34.38 58.22 58.17 70.75 70.73
Embedding LINE(Guww) 73.98 69.92 71.07 71.06 73.19 73.18
LINE(Guwd) 71.50 67.23 69.25 69.24 73.19 73.19
LINE(Guw + Guwa) | 74.22 70.12 71.13 71.12 73.84 73.84
CNN 76.16 73.08 72.71 72.69 75.97 75.96
CNN(pretrain) 75.39 72.28 68.96 68.87 75.92 75.92
o PTE(Guwi) 76.45 72.74 73.44 73.42 73.92 73.91
gres“::iYe PTE(Guww + Gut) | 76.80 73.28 72.93 72.92 74.93 74.92
mReCCE T PTE(Guwd + Gui) 77.46 74.03 73.13 73.11 75.61 75.61
PTE(pretrain) 76.53 72.94 73.27 73.24 73.79 73.79
PTE(joint) 77.15 73.61 73.58 73.57 75.21 75.21

Paper: Predictive Text Embeddings via Large-scale Heterogeneous Text Networks
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Knowledge Graph Embedding Techniques for
Heterogeneous Graph Embeddings
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Workflow of Shallow Heterogenous Graph Embedding

Lookup Layer
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Shallow Heterogeneous Graph Embedding (Knowledge Graph
Embedding Techniques)

Many knowledge graph embedding (KGE) techniques have been proposed

RESCAL (Nickel et al, 2011)

TransE (Bordes et al, 2013)

Neural Tensor Network (Socher et al, 2013)
DistMult (Yang et al, 2015)

Complex Embeddings (Trouillon et al, 2016)
Quaternion Embeddings (Zhang et al, 2019)

57



RESCAL: A Three-way Model for Collective Learning on

Multi-relational Data

Tensor factorization on the <head-entity, tail-entity, relation>tensor

pairs of entities are
represented via the tensor
product of their
embeddings

difficult to scale quadratic
runtime and memory
complexity (embedding
dimension)

1-th
entity o

k-th °[

relation

R P

Y

1-th
entity

@

k-th

relation

EW.E'

RESCAL as a tensor factorization of the adjacency tensor Y.

Paper: A Three-Way Model for Collective Learning on Multi-Relational Data
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RESCAL: A Three-way Model for Collective Learning on
Multi-relational Data

Tensor factorization on the <head-entity, tail-entity, relation> tensor
Xk ~ ARkAT
A is a n x r matrix, representing the global entity-latent-component space
R« is an asymmetric r x r matrix that specifies the interaction of the latent
components per predicate
X | Ry ||l % AT

Paper: A Three-Way Model for Collective Learning on Multi-Relational Data
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TransE for Embedding Heterogeneous Graphs

© Translation Embedding (TransE): when adding the relation to the head entity, we
should get close to the target tail entity

O Vertex —> Edge @ Vertex embedding — Edge embedding

A
Vh
v
o't
KG triple Embedding spac/e

Paper: Translating Embeddings for Modeling Multi-relational Data
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TransE for Embedding Heterogeneous Graphs

© Margin based loss function:
o Minimize the distance between (h+l) and t.

o Maximize the distance between (h+l) to a randomly sampled tail t’ (negative

example).
L= ) Y [y+dh+et)—db +6¢)],
(h£,t)ES (W £,t")ES]

(h,L.3)

where [z], denotes the positive part of z, v > 0 is a margin hyperparameter, and
Séh,g’t) = {(h’,f, t)|h' e E} U {(h, 0,1t e E}

Paper: Translating Embeddings for Modeling Multi-relational Data 61
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TransE for Embedding Heterogeneous Graphs

Link prediction results. Test performance of the different methods.

DATASET WN FB15K FB1M
METRIC MEAN RANK HiTs@10 (%) || MEAN RANK | HITS@10 (%) || MEAN RANK | HITS@10 (%)
Eval. setting Raw Filt. | Raw Filz. Raw  Filt. | Raw Filz. Raw Raw
Unstructured [2] 315 304 | 35.3 38.2 || 1,074 979 4.5 6.3 15,139 2.9
RESCAL [11] 1,180 1,163 | 37.2 52.8 828 683 | 28.4 44.1 - -
SE [3] 1,011 985 | 68.5 80.5 273 162 | 28.8 39.8 22,044 17:5
SME(LINEAR) [2] 545 533 | 65.1 74.1 274 154 | 30.7 40.8 - -
SME(BILINEAR) [2] 526 509 | 54.7 61.3 284 158 | 31.3 41.3 - -
LFM [6] 469 456 | 71.4 81.6 283 164 | 26.0 33.1 - -

| fransE 263 251 | 754 89.2 | 243 125 | 349 47.1 14,615 34.0 |

Paper: Translating Embeddings for Modeling Multi-relational Data
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TransE for Embedding Heterogeneous Graphs

Detailed results by category of relationship. We compare Hits@10 (in %) on FB15k in
the filtered evaluation setting for our model, TransE and baselines. (M. stands for MANY).

TASK

PREDICTING head

PREDICTING tail

REL. CATEGORY 1-to-1 1-Tto-M. M.-TO-1 M.-TO-M. | 1-TO-1 1-TO-M. M.-TO-1 M.-TO-M.
Unstructured [2] 34.5 2.5 6.1 6.6 34.3 4.2 1.9 6.6
SE [3] 35.6 62.6 172 375 34.9 14.6 68.3 41.3
SME(LINEAR) [2] 35.1 53.7 19.0 40.3 32.7 14.9 61.6 43.3
SME(BILINEAR) [2 30.9 69.6 19.9 38.6 28.2 13.1 76.0 41.8

[TransE | 437 657 182 472 | 43.7 19.7 66.7 | 437 2 1997 2 667  50.0 ||

Paper: Translating Embeddings for Modeling Multi-relational Data
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Embedding Twitter Heterogeneous Information Network
(TWHIN) — TransE in the Wild

© AsTransEisscalable, it can be

used to embed graphs Guweet)w--------
consisting of billions of nodes N

and hundreds of billions of (%a“,-o,-itg,
edges. N
© Subsets of nodes, their — { Retweets - —
embeddings, and associated 7
( Replies )

edges are loaded into oy e

7
memory. A, sy 3((
© TransE training to learn tiser; ) — —

embeddings

Paper: TwHIN: Embedding the Twitter Heterogeneous Information Network for Personalized Recommendation
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Embedding Twitter Heterogeneous Information Network

(TWHIN) — TransE in the Wild

[ —0.13 ]

-] 0.30
Join E"t‘:l:)en::? ¢ | 0.56 |
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| 091 |
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Ranking Model o
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ﬁ 041 =0, —nVLO,)

Used as input _4

Downstream task 2:
Candidate Generation
(KNN index)

TwHIN Graph Pretraining

R d

Downstream tasks

Paper: TwHIN: Embedding the Twitter Heterogeneous Information Network for Personalized Recommendation
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Neural Tensor Networks for Embedding Heterogeneous
Graphs

© Model the bilinear interaction between entity pairs using tensors
o The model computes a score of how likely it is that two entities arein a
certain relationship by the following NTN-based function g(ei, R, €2):

Paper: Reasoning with Neural Tensor Networks for Knowledge Base Completion

Neural Tensor Layer
el e2, W1
Linear Slices of Standard Bias [e12e2} < - -
Layer Tensor Layer Layer —— e -+ tanh
@@® [oo0] M@ NG ’
@® : 333 : 000000 Q) TN LI
il &8 81 g8 g -
- o ~
(IX) §§§ : o r %,/ #,:, Uz
L - Z - el,e2.K WIJ-,‘W"?‘
7 e tanh
U f e Wi e, + v | 4b) i
1 e

66


https://proceedings.neurips.cc/paper/2013/file/b337e84de8752b27eda3a12363109e80-Paper.pdf

Neural Tensor Networks for Embedding Heterogeneous
Graphs

© Training objective: T = (e ,R%,e ) is a triplet with a random entity
corrupted from a correct triplet T (i) = (e , R, el))

e Score the correct relation triplet higher than its corrupted one up to a margin of 1.
e Foreach correct triplet sample C random corrupted triplets.

J(Q) = sza,x (0 1 (T@) tg (T,@)) A2

=1 e=1

Paper: Reasoning with Neural Tensor Networks for Knowledge Base Completion
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DistMult (bilinear-diag): Embedding Entities and Relations for
Learning and Inference in Knowledge Bases

© Special case of neural tensor network
o without nonlinear layer, linear operator, and uses 2-d matrix instead of tensor for the relation

© Bi-linear formulation with diagonal matrix relation
o  same number of parameters as TransE
o element-wise product between relation embedding and entity embedding

DistMult f.(h, t)

VS

h

ﬁ

Paper: Embedding Entities and Relations for Learning and Inference in Knowledge Bases
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DistMult (bilinear-diag)

Link Prediction Task

FB15k FB15k-401 WN
MRR | HITS@10 | MRR | HITS@10 | MRR | HITS@10
NTN 0.25 41.4 0.24 40.5 0.53 66.1
Blinear+Linear 0.30 49.0 0.30 494 0.87 91.6
TransE (DISTADD) 0.32 53.9 0.32 54.7 0.38 90.9
Bilinear 0.31 519 0.32 52.2 0.89 92.8
[ Bifinear-diag (DISTMULT) | 0.35 | 57.7 | 0.36 | 585 | 0.83 | 942 |

© Performance increases as complexity of model decreases
© Likely because these graphs are relatively small, so overfitting with
complex models

Paper: Embedding Entities and Relations for Learning and Inference in Knowledge Bases



https://arxiv.org/pdf/1412.6575.pdf

ComplEx Embeddings for Simple Link Prediction

© DistMult Performs dot product in real-space
o This can’t model anti-symmetric relationships
© ComplEx Embeddings
o Extends DistMult by performing dot product in Complex space
(Hermitian)
o This can capture anti-symmetric relationships

fC’omplE:c — Re(<rpaesa e_0>)

Paper: Complex Embeddings for Simple Link Prediction
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ComplEx Embeddings for Simple Link Prediction

© Visualizing training, validation and test

sets exps
o one symmetric relation
o one antisymmetric relation
o Red pixels are positive triples
o  Blue pixels are negatives
o  Green missing ones
© Top: Plots of the symmetric slice
(relation) for the 10 first entities
© Bottom: Plots of the antisymmetric slice

for the 10 first entities.

Paper: Complex Embeddings for Simple Link Prediction

Symmetric relation train slice matrix

Symmetric relation valid slice matrix

Symmetric relation test slice matrix

y |
g |
sk
. . . . . . .
0 2 4 6 8 0 2 4 6 8
Antisymmetric relation valid slice matrix ~ Antisymmetric relation test slice matrix
oF T T T of
2fF 2
I P
o 1 m R o
. . . . .
0 2 4 6 8 0 2 4 6 8
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ComplEx Embeddings for Simple Link Prediction

Model Scoring Function Relation parameters Oipase
RESCAL (Nickel etal, 2011) | e Wye, W, € REK” O(K?)
TransE (Bordes et al., 2013b) | [|(es + w,) — 0|, w, € RE O(K)
1..D W, € RE’D p. c RE

NTN (Socher et al., 2013) ul f(es Wi Ple, + Vi, VS RKD e RE O(K>D)
DistMult (Yang et al., 2015) 2 Yo CpyiC 55 w, € RY O(K)
HolE (Nickel et al., 2016b) wl (F~1[Fles) © Fleo]])) w, € RE O(K)
ComplEx Re(< wy,es, € >) w, € CK O(K)

Paper: Complex Embeddings for Simple Link Prediction
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ComplEx Embeddings for Simple Link Prediction

WNI18 FB15K
MRR Hits at MRR Hits at
Model Filter Raw 1 3 10 Filter Raw 1 3 10
CP 0.075 0.058 0.049 0.080 0.125 0.326 0.152 0.219 0.376 0.532
TransE 0.454 0.335 0.089 0.823 0.934 0.380 0.221 0.231 0.472 0.641
DistMult 0.822 0.532 0.728 0914 0.936 0.654 0.242 0.546 0.733 0.824
HolE* 0.938 0.616 0.93 0.945 0.949 0.524 0.232 0.402 0.613 0.739

ComplEx 0941 0587 0.936 0945 0947 0.692 0.242 0.599 0.759  0.840

Filtered and Raw Mean Reciprocal Rank (MRR) for the models tested on the FB15K and WN18 datasets. Hits@m metrics are
filtered. *Results reported from (Nickel et al., 2016b) for HolE model.

Paper: Complex Embeddings for Simple Link Prediction
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ComplEx Embeddings for Simple Link Prediction

Symmetric relation AP vs rank Anti-symmetric relation AP vs rank Overall AP vs rank
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Factorization rank Factorization rank

Average Precision (AP) for each factorization rank from 1-50 for different KGE models on asymmetry and
symmetry experiments. Top-left: AP for symmetric relation only, middle: AP for anti-symmetric relation,
right: overall AP.

Paper: Complex Embeddings for Simple Link Prediction
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QuatE: Quaternion Knowledge Graph Embeddings

© QuatE: Hypercomplex representations to model entities and relations
(1) rotate the head quaternion using the unit relation quaternion

(2) take the quaternion inner product between the rotated head quaternion and the tail quaternion
to score each triplet

Edge exists: rotated head entity has smaller angle between head/tail so the product is maximized
o Edge does not exist: Head and tail entity are orthogonal so that their product becomes zero.

A A
Imaginary ij=k

fi=-1 i | Axis ji=-k i
K )
Real
Axis
\" | ;
i

1 it 1
k
4

|

o

k

Complex Plane Quaternion units product sterographi'cally projected hypersphere in 3D space. The purple dot
indicates the position of the unit quaternion.

Paper: Quaternion Knowledge Graph Embeddings 75
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QuatE: Quaternion Knowledge Graph Embeddings

Scoring functions of state-of-the-art knowledge graph embedding models, along with their
parameters, time complexity. “x" denotes the circular correlation operation; “o" denotes Hadmard (or
element-wise) product. “®" denotes Hamilton product.

Model Scoring Function Parameters Otime
TransE | (Qn + W) — Q: || Qn, Wr, Q: € RF O(k)
HolE (W, Qn * Q:) Qn, Wy, Q¢ € RF O(klog(k))
DistMult <Wr, Qh,, QE> Qh7 WT‘) Qt = Rk O(k)
ComplEx Re((Wy, Qn, Q+)) Qn, W,,Q: € C* O(k)
RotatE || Qh oW, — Qt || Qh7 W’r‘) Qt = Ck, IWTZ| =1 O(k)
TorusE  mine yeeu+i@n)xw. | 2=y | [@n], Wr], [Q¢] € T O(k)
QuatE Qrn WS- Qy Qn, Wr, Q¢ € H O(k)

Paper: Quaternion Knowledge Graph Embeddings 76
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QuatE: Quaternion Knowledge Graph Embeddings

Link prediction results on WN18 and FB15K. Best results are in bold and second best
results are underlined. [{]: Results are taken from [Nickel et al., 2016]; [¢]: Results are taken
from [Kadlec et al., 2017]; [*]: Results are taken from [Sun et al., 2019]. a-RotatE denotes RotatE
with self-adversarial negative sampling. [QuatE']: without type constraints; [QuatE?]: with N3
regularization and reciprocal learning; [QuatE®]: with type constraints.

WN18 FB15K

Model MR MRR Hit@1l0 Hit@3 Hit@l MR MRR Hit@10 Hit@3 Hit@1
TransEf} - 0.495 0.943 0.888  0.113 - 0463  0.749 0.578  0.297

DistMulte 655  0.797 0.946 - - 422 0798  0.893 - -
HolE - 0.938 0.949 0945  0.930 - 0524  0.739 0.759  0.599
ComplEx - 0.941 0.947 0945 0.936 - 0.692  0.840 0.759  0.599
ConvE 374 0943 0.956 0946 0935 51 0.657 0.831 0.723  0.558
R-GCN+ - 0.819 0.964 0929  0.697 - 0.696  0.842 0.760  0.601
SimplE - 0.942 0.947 0944  0.939 - 0.727  0.838 0.773  0.660
NKGE 336 0.947 0.957 0949 0942 56 0.73 0.871 0.790  0.650
TorusE 0.947 0.954 0950 0.943 - 0.733  0.832 0.771 0.674

RotatE 184 0.947 0.961 0953  0.938 32 0699  0.872 0.788  0.585
a-RotatEx 309  0.949 0.959 0952  0.944 40 0.797  0.884 0.830  0.746

QuatE' 388  0.949 0.960 0954 0941 41 0770  0.878 0.821 0.700
QuatE? - 0.950  0.962 0954 0.944 - 0.833  0.900 0.859  0.800
QuatE?® 162 0950  0.959 0954  0.945 17 0.782  0.900 0.835  0.711

Paper: Quaternion Knowledge Graph Embeddings
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QuatE: Quaternion Knowledge Graph Embeddings

Link prediction results on WN18RR and FB15K-237. [t]: Results are taken from [Nguyen
et al., 2017]; [¢]: Results are taken from [Dettmers et al., 2018]; [*]: Results are taken from [Sun
et al., 2019].

WN18RR FB15K-237
Model MR MRR Hit@l0 Hit@3 Hit@l MR MRR Hit@l0 Hit@3 Hit@1

TransE f 3384 0.226 0.501 - - 357 0.294 0.465 - -
DistMulte 5110  0.43 0.49 0.44 0.39 254  0.241 0.419 0.263  0.155
ComplExe 5261  0.44 0.51 0.46 0.41 339  0.247 0.428 0.275  0.158

ConvEo 4187 043 0.52 0.44 040 244 0.325 0.501 0.356  0.237

R-GCN+ 0.249 0.417 0.264  0.151

NKGE 4170  0.45 0.526 0465 0421 237 033 0.510 0.365 0.241
RotatEx 3277 0.470 0.565 0488 0422 185 0.297 0.480 0.328  0.205
a-RotatEx 3340 0.476 0.571 0492 0428 177 0.338 0.533 0.375  0.241

Paper: Quaternion Knowledge Graph Embeddings
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Break time!

We’ll continue in 30 minutes



Graph Neural
Networks

Michael Bronstein
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Beyond Shallow Embeddings: Deep Learning on Graphs

© Shallow embeddings are highly scalable due to their simplicity
o Easy to train shallow embeddings for billions of nodes and trillions of
edges
© However, this simplicity comes at a great cost
o Shallow embeddings are transductive
o Cannot generalize to new nodes / graphs
© Deep learning can allow us to have inductive node embeddings
o Embed new nodes and new graphs



Inductive vs Transductive Embeddings
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Challenges to Deep Learning on Graphs

Conv. Module #1 Conv. Module #2 Classification

© Standard deep learning is designed
for structured inputs
o grid images
o text sequences

output: cat? (y/n)

convad maxpool conv2d maxpool

. . . fu fu
@ Pe rfo rming deep [ea rning on Input +RelU +RelU comemed  connonted
graphs is different than on images
or text

>
®
0 —>
m
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@

Encoder Decoder



Why is Deep Learning on Graphs Hard?

© Not all data has locality / lives on a grid

o Graphs lack locality

o  While Images / text can be plot on a grid
© Graphs can be arbitrarily large
© Thereis no canonical node ordering for graphs
P

al

)

VS




Graph Symmetries and Permutation Invariance
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Graph symmetries: permutations

Adjacency matrix Feature matrix
nxn nxd
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Graph symmetries: permutations

Adjacency matrix Feature matrix
nxn nxd
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Graph symmetries: permutations

Adjacency matrix Feature matrix
nxn nxd

PX
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Permutation invariance

graph function f(X,A)

© Graph Neural networks consist of a shared function that operates on every node
o Theinput are the collection of features in the neighbors of every node

920



Permutation invariance

graph function f(X,A)

© Because we don’t have any canonical ordering of the neighboring nodes, this graph function
must be permutation invariant
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Permutation invariance

f(PX,PAP'") = f(X,A)

permutation invariant

© Because we don’t have any canonical ordering of the neighboring nodes, this graph function
must be permutation invariant
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Permutation equivariance

node function F(X,A)

© Apply this function to every node of the graph
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Permutation equivariance
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© Apply this function to every node of the graph
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Local aggregation

[TTTIx;

¢

permutation invariant

© _ Apply this function to every node of the graph
o  Picking the right function such that results in permutation equivariant node-wise
function
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Local aggregation

_ ¢(x1: le) —
FOGA) = [ = &k Xar,) -

_ ¢ (xn: x]\fn) T

permutation equivariant

©. Apply this function to every node of the graph
o Picking the right function such that results in permutation equivariant node-wise
function

96



Are all Neural Network Architectures Permutation Equivariant?

© Not all neural architectures are permutation equivariant
o  Multi-layer perceptrons are not permutation invariant
o Permuting the input changes the output

Need permutation equivariant / invariant architectures for GNNs

98
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Flavors of GNNs
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Neural Message Passing
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Neural Message Passing
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Simple Message Passing

Two-step process

1. Average messages from neighbors
2. Apply a neural network to passed
messages + current node

o
‘0
.

Diagram from Jure Leskovec, Stanford University 192
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Simple Message Passing

TARGET NODE

l

INPUT GRAPH

Neural networks

Diagram from Jure Leskovec, Stanford University 103
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Simple Message Passing: Arbitrary Depth

Model can be applied at arbitrary proximity-depth (hops)
1. Nodes have embeddings at each layer

2. Layer 0 representations are the features of a node L 1 Layer—}O(
3. Layer 1 representation gets message from nodes ayer- - ® X A
l_hop away PAREETNEDE ) 'A“ ..................... ' XC
l Layer-2 @ X4
| 5 A'ff,':‘.'.‘:-.'.‘....“..‘ X B
@
INPUT GRAPH ‘.‘ """""""""""""" ® X A

Diagram from Jure Leskovec, Stanford University 104
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Simple Message Passing: Update Function

(1) average messages

.................. a
TARGET NODE from neighbors .,‘.
1. Pool messages | .
a. averaging works o @
2. thenapply aneural ® <« s ."-:;,;;;::.'.:_...ﬁ.
network ®
@
INPUT GRAPH ‘.‘ .
(2) apply neural network

Diagram from Jure Leskovec, Stanford University 1g5
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Neural Message Passing Example

t=1

m;II: Z h&] h3

. wcN(v) @ 100 (| 5
Simple message 1)
passing

Wt = average(h,, m!,

h2
ht - hidden state for each node @
| 20| 5

V1
h1

diagram source 106
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Neural Message Passing Example

t=1

= Y i
Message is sum of weHin)
neighbor’s hidden  i,'" = average(h,, m},'")

states
ht - hidden state for each node

-10| 5

10

diagram source

h3

V1

h1

h2

-20
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Neural Message Passing Example

t=2

t1 _ t
my' = Y

Update function is weN(v)
the average of
current hidden
state and message 1t - hidden state for each node

1 _ t+1
h,'" = average(h,,m;,'")

diagram source

(w)

V1

h3

10|10 | 5

h1_new

h2

-20
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Graph Convolutional Networks
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Standard Convolutional Neural Networks (CNN)

Single CNN layer
with 3x3 filter: h
1 -
O\‘O'/O Update for a single pixel:
Y * Transform messages individually W h;
O-+U=0)

‘\O - Add everythingup ) . W;h;
» CB h;

h; € RY are (hidden layer) activations of a pixel/node

hg

Full update:
b = o (WY + WBY -+ WOBY)

slide from Thomas Kipf, University of Amsterdam*19



Graph Convolutional Neural Networks (GNN)

Consider this Calculate update Desirable properties:
undirected graph: for node in red: - Weight sharing over all locations
* Invariance to permutations

O O '/O * Linear complexity O(E)
8 » Applicable both in transductive

O O O O O/ \O and inductive settings

Update 1
I+1 Dxx7 (D) (Dxx7 (D)
rule: hz(- = o|h; "W, + E : Th.j Wi
jeN; Y
Scalability: subsample messages [Hamilton et al., NIPS 2017] M : neighbor indices  Cjj : norm. constant

(fixed/trainable)

*slide from Thomas Kipf, University of Amsterdam

Paper: Semi-supervised Classification with Graph Convolutional Networks 111
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Graph Convolutional Neural Networks (GNN)

parameters in layer k

Non-linear activation function (e.g., ReLU)

hk—l
hk = o(W, u )
klg‘) vV IN@W) || N()|

node v’s embedding at layer k
the neighbors of node v

Paper: Semi-supervised Classification with Graph Convolutional Networks
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Graph Convolutional Neural Networks (GNN)

Aggregate from v’s neighbors

k—1
hu

hk=o(W, ) +
weNw [ | N | | Nw) |

Z hk—l
W, : )
C A ANOTING)

Aggregate from itself

Paper: Semi-supervised Classification with Graph Convolutional Networks
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Relationships between CNNs and GNN

A convolutional neural network (CNN) is a special case of a graph neural
network

While the size of the filter is pre-defined in a CNN, a GNN takes in nodes with
arbitrary degree (neighboring nodes)

X
X
X]
J
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Attention-based Graph Neural Networks
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Introducing Transformers

© Transformers architectures have
shown state-of-the-art
performance in many NLP and
vision tasks

© adopts the mechanism of
self-attention, differentially
weighting the significance of each
part of the input data

© notall node’s neighbors are equally

important
o Attend to the relevant
neighbors

Paper: Attention is all you Need

Output
Probabilities

Linear

Add & Norm
Feed
Forward
Add & Norm
s Multi-Head
Feed Attention
Forward J ) Nx
—
Nix Add & Norm
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
At 2 1
\_ J \ _))
Positional o) 4 Position:
Encoding Encodin
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Multi-Head Attention

1
Scaled Dot-Product
Attention

1L I 11
I Linear |}| Linear '}I Linear',]
V K Q

Scaled Dot-Product Attention

MatMul
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Transformers are Graph Neural Networks

Yat

Blogpost: Transformers are Graph Neural Networks

Consider a sentence as a fully
connected graph of words...
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Transformers are Graph Neural Networks

£+1
hi

A

K (W Vj € N )

Sum over local
neighborhood

W = o (U Y (VR

JEN(3)

i.e., hf“ -

Sum over
wvies| all words
inS
IANA
> wi (V'R)),
jes

where w;; = softmaxj(thf . thf),

Blogpost: Transformers are Graph Neural Networks
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Graph Attention Networks

©

Certain neighbors to a node are
more important than others to
its understanding

Learn attention weights to
identify the relevancy of nodes

Paper: Graph Attention Networks

GCN

hf=o(W, )

ueN(v)uv

k—1
hu

)
VINWI[|INQ)|

Graph Attention

kp k—1
a, ,W*h, )
Learned attention weights
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Graph Neural Networks with Attention

© Compared to GCNs
More expressive than GCNs
o  Slower than Graph Convolutional
Networks

softmax

concat/avg /.
R}

Wh Wh;
[Figure from Velickovi¢ et al. (ICLR 2018)]
| K exp (LeakyReLU (é’T [Wﬁz“WI—i]]>)
ol = of WFR . j = S—
i K kz::l j%\:/» K J Y kN, €XD (LeakyReLU (é'T [th||th])>

*slide from Thomas Kipf, University of Amsterdam

Paper: Graph Attention-Networks 120
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Training GNNs on Unsupervised and Supervised Tasks
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Tasks to Learn Node Embeddings with GNNs

Unsupervised Objectives
Use graph structure as supervision

Predict Node Similarity
Random Walk
DeepWalk
Link prediction task
Hold-back edges and try to predict

Supervised Objectives
Externally labeled data

Node classification
Graph classification

Time T+1
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Graph Representations for
Recommender Systems

Ying Xiao



Graph embeddings give a dense representation per user and item,;
how do we incorporate them into recommender systems?
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Web Scale Recommender System

Task: recommend relevant items to users.
Web scale: >10°-10° items, >10° users.

Applications: social media/networks, search, e-commerce,
ads, video streaming, etc.
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Topic for this session

How to integrate graph embeddings into web scale
recommendation systems.

Not discussed: methods that examine
paths/neighbourhoods to directly provide
recommendations or refine embeddings.

See also: A Survey on Knowledge Graph-Based
Recommender Systems
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Two-stage

Candidate Generation: retrieval task.

Ranking models: high precision ranking task.

<

e 1.06-10% -

Corpus

-\\\\\

./

Candidate Generation

Ranking

01-102—p User

136



Ranking models

Neural Network

Parameter:

50+ Million;
Computation:
100+ TFLOP. )

Feature Interaction (e.g., aggregate or concatenate)

Embedding Layer !
|

ID Type Features

Parameter:

100+ Trillion;
Computation:
10+ MFLOP.

Loss Function

Paper: Persia: An Open, Hybrid System Scaling Deep Learning-based Recommenders up to 100 Trillion Parameters

Large trainable
embedding
already
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Large sparse features / large trainable embedding tables

ID features - ids of items a user has previously found
relevant - lead to huge tables (10°-10' params).
Only recently easily trainable on GPU in torch
(torchrec) and TensorFlow (NVidia HugeCTR SOK).
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Trainable embeddings: significant infrastructure investment

10000 -
Switch DLRM-2022
(0]
1000 - Transformer(G) 4
DLRM-2021
= GPT-3,
S 100 | °
a DLRM-2020
[%]
g 10 -
[J]
€
©
g 1 BERT
3 $
o VGG
AlexN
E 01 - e): et * ResNet AlphaZero
=z .
*
0.01 - GoogleNet ycaption
*
0.001 T T T T T 1
2010 2012 2014 2016 2018 2020 2022

Petaflop/s-days

10000 - GPT-3
AlphaGoZero
*
1000 - AlphaZero
*
100 -
DLRM-2022
10 - Xception BERT °
* o DLRM-2021
[}
1 -
VGG ResNet
0.1 - 23 -
DLRM-2020
GooglLeNet °
AlexNet .
0.01 *+ T T T T 1
2010 2012 2014 2016 2018 2020 2022

Paper: Software-Hardware Co-design for Fast and Scalable Training of Deep Learning Recommendation Models
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Pre-trained embeddings & end-to-end trained embeddings

Advantages:

Infrastructural simplicity.
Applicability to many tasks.
Use data from different tasks.

Disadvantages
Lack of task specificity (i.e., performance).
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Pre-trained and end-to-end trained embeddings are NOT
mutually exclusive. You probably want both for key
applications!
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Inductive bias: pairwise interactions between item + user

Rating Matrix R Feature P Feature Q
n k
7 A e ) —_—
— 1.2]0.8 15]|12|1.0 (0.8 )
factorization | 1 4 4 10.9 17 [06[1.1 |04
o A
e < X
1.511.0 . N <
n
12108
X | Unknown samples Observed samples

Paper: CuMF__ : Fast and Scalable Matrix Factorization 142
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Bilinear product
Prediction: <user vector, , item vectorj>

Key properties:
Linear in user vector., linear in item Qj.

Sutputisa-stretescatar.

Intuition: capture interaction in mathematically simple,
but still expressive way.
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DLRM: Gram matrix of all embeddings for entities.

/,B-t.. ..F:_ _ITI e e Communication
ata Parallelism Top Neural Patterns

]
l Networks
i
i
I
I
i
1
1

Feature Interaction :
__________________________ ! AlltoAll
Bottom Neural = 2 \
1 Networks : Ret’:[i.uceIScatter
i I optiona
% e SRUPR | (optional)

————— - Operators
(Section 5) One-to-many
_____________ o Many-to-many

Operators :
/

Categorical Categorical
Features Features

Dense Features

InputFe Concat pre-trained
embedding here.

Paper: Deep Learning Recommendation Model for Personalization and Recommendation Systems
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DLRM: basic idea

Start with many embeddings per user/item pair:

Project them to the same dimension.

Compute all inner-products of these embeddings.
Concatenate n choose 2 unique ones with dense
Inputs.

This makes it easy to add new pre-trained embeddings.
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Deep and Cross Network vl and v2

Capture interaction with more than a single scalar.
Stack the interaction layers.

Paper: Deep & Cross Network for Ad Click Predictions

Paper: DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems
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Interaction layers: more than a single scalar

Input

Bias

Feature Crossing

Output

L —

- ——— e ————-

[ ——

- ————-

S e ce——-—-—-

IIIIIIIIIIII

- —————-

RS ——_

- ——————————-

IIIIIIIIIII

Component-wise product
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Practical Consideration 1: Normalization

Most DNNs assume that neurons are approximately
mean 0, variance 1 (e.g., batch norm, layer norm, MLP
layer initializations).

Try normalizing pre-trained embeddings before
feeding into model

Paper: TwHIN: Embedding the Twitter Heterogeneous Information Network for Personalized Recommendation
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Practical Consideration 2: Space/IO Efficiency

Embeddings can be made very space efficient:

Compress with product quantization (PQ).

Large compression ratios (>75%) without affecting
downstream task metrics

Fast implementations in Faiss; decoding trivial.

Paper: Product Quantization for nearest neighbor search

149


https://github.com/facebookresearch/faiss
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Product Quantization

Input Partition
(d values, float32) (n chunks)

-

—_—

T

Lookup
(k=256)

Centroid,

Centroids

Centroids

Centroid,

Output
(n uint8)
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PQ effect on downstream task

0.600
o |
S 0.590

0.585

no TwHIN embeddings

0.580

0 5 10 15 20 25 30 35 40
Compression Factor 151



Practical Consideration 3: Drift Mitigation

Over time, we want to retrain the model, but at time
t+1, don’t want embedding too different from time t.
Principled approach - constrain difference between
embeddings at different times.

Works well, but doubles memory.
More efficient approach - initialize training at time t+1
with parameters from time t.
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Practical Consideration 4: Redundancy with pre-existing features

For pre-existing models, graph embeddings may be
very redundant with pre-existing features.
Especially when there lots of hand-crafted features

with lots of data.
Limits model improvements when adding graph

embeddings.
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Redundancy with pre-existing features

This is actually a desirable situation:

Add graph embedding.

Run feature selection on pre-existing features.
Remove many of them (85% for Twitter use case).
Reclaim the I0/compute budget for other model
improvements such as scaling up model architecture.
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History Aggregation

Idea: aggregate embeddings of relevant items per user

Aggregation types: pooling, RNNs, attention.

Broad in scope: many research papers.

Example: DKN
After embedding, run attention between the
candidate item and items previously relevant to a
user.

Paper: DKN: Deep Knowledge-Aware Network for News Recommendation
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LSTM Layer

Embedding Layer

Path dependent methods

Shape of You
@

Item

@

Extract paths, run rnn over paths, pool for prediction.

Paper: Explainable Reasoning over Knowledge Graphs for Recommendation
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Summary: graph embeddings in ranking models

Complementary to large trained embeddings, though
typically *much” easier to get started with.

Need to have both user and item representations.
Plethora of practical tricks to make it work better.
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Candidate Generation

Cand Gen Family

ltem-based
(content-based)

Collaborative filtering

Definition

Using item similarity, query
similar items to what a user
prefers.

Suggest preferred items from
similar users to a user.

Example

User faves travel tweets, so
suggest similar travel
tweets.

User A and B are similar, A
likes travel tweets, so
suggest travel tweets to B,

158



Heuristic and model based candidate generation

Many candidate generation strategies are heuristics
(e.g., most popular/recent items).

Pre-trained embeddings fall into a family of ML model
based techniques.
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Model-based Candidate Generation

Approximate nearest neighbor (ANN) based dense retrieval

Retrieval from an index of items, or
RS Models factored into two towers:

(u(z), v(y)) — Replace with ANN
(00 o) (/) (NN Precompute

Precompute N . (1) 09~ 0

Figure fromYietal.,

[ ‘Q%\‘] [ ‘/)%\‘] Sampling-bias-corrected neural
reX yey modeling for large corpus item

recommendations, 2019. 160
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https://storage.googleapis.com/pub-tools-public-publication-data/pdf/6c8a86c981a62b0126a11896b7f6ae0dae4c3566.pdf

Plug and Play

Adding a graph embedding to candidate generation
system tends to be straightforward e.g.,

Take your embeddings, put them in an ANN index,
qguery the ANN index at retrieval time.
Add graph embedding to a two-tower model.

Packages: HNSW, Faiss
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k-NN retrieval “Locality implies similarity”

We retrieve items that are close to a user in embedding
space.

Retrieved items are close in embedding space too.

=> Retrieved items are similar to each other.

When items are too similar- issues with diversity,
multi-modal interests, polysemy in search.
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Deep Personalized and Semantic Retrieval (DPSR)

Offline Model Training

Soft Dot
Product

Replace with ANN

: . .
i ldea: query the KNN index with
_ Relu | : .
: k embeddings.
|
T i
| Refw | [ R"}LU | | ReLU |
Projection Projection rvie Vector Torand T T Paper, Towards Personalized and
Matrix 1 Matrix k e eor | prand jector Semantic Retrieval: An End-to-End

i el A Shippi
Profile Vector History Vector Query Vector /—ﬁ ;sg;ng
Concat Average Average

]
I . .
. Solution for E-commerce Search via
;

[ | [ | i
I

Embedding Learning

a
. e
~ W O o
I N l | n I n [ |
|
User Profile User History Events Query Tokens Item Title Tokens  Brand Category

s 5 S e e BN S SYSISITETe S F T o SRS TR N SRS Y e § S TS S S T e S 8 S S Ai 163
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Pinnersage

Given an item embedding, build a user representation:
Cluster previously relevant items.

For each cluster, compute the medoid (not centroid).

For each user, weight the clusters with time decay.

To generate candidates: retrieve from ANN based on 3
medoids, importance sampled.

Paper: PinnerSage: Multi-Modal User Embedding Framework for Recommendations at Pinterest
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PinnerSage Results

Table 4: Lift relative to last pin model for retrieval task.

Rel. | Recall
Last pin model 0% 0%
Decay avg. model (A = 0.01) 28% 14%
Sequence models (HierTCN) 31% 16%
Item Clustering wmm=m) PinnerSage (sample 1 embedding) 33% 18%
PinnerSage (K-means(k=5)) 91% 68% <= Multiple Queries
PinnerSage (Complete Linkage) 88% 65%

PinnerSage (embedding = Centroid) | 105% | 81%

PinnerSage (embedding = HierTCN) | 110% | 88%

PinnerSage (importance A = 0) 97% | 72% <mmmmmm Tuningtime
PinnerSage (importance A = 0.1) 94% 69% decay
PinnerSage (Ward, Medoid, A = 0.01) | 110% 88%
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k-NN Embed: Multiple querying on top of a kNN system

(Globally) cluster all the items in your embedding.
Model each user as a mixture over item clusters:

p(item|user) = Z p(cluster|user) - p(item|user, cluster)

cluster

|dea: data per user is sparse, so use data from adjacent
users since we know they’re similar.

Paper: kNN-Embed: Locally Smoothed Embedding Mixtures For Multi-interest Candidate Retrieval
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k-NN Embed;:

User’s preference over clusters:
smooth this with neighboring
users’ preference over clusters.

l

p(item|user) = Z p(cluster|user) - p(item|user, cluster)

cluster I

ANN retrieval - query from the
centroid of this user in the cluster
smoothed with centroids of
neighbouring users
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k-NN Embed: Expand ANN search by using similar users

Cluster; / \
\ / nearest Item
neighbour | Cluster; l
\ 2 :
e / |

nearest
neighbour
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k-NN Embed: Improvements in diversity

7.2 Recall

Table 1. HEP-TH Citation Prediction. Table 2. DBLP Citation Prediction. A = Table 3. Twitter Follow Prediction. A =
A = 0.8, 2000 clusters, 5 embeddings for 0.8, 10000 clusters, 5 embeddings for 0.8, 40000 clusters, 5 embeddings for
multi-querying. multi-querying. multi-querying.

Approach R@10 R@20 R@50 Approach R@10 R@20 R@50 Approach R@10 R@20 R@50

Unimodal 20.0% 30.0% 45.7% Unimodal 9.4% 13.9% 21.6% Unimodal 0.58% 1.02% 2.06%
Mixture 22.7% 33.4% 49.3% Mixture 10.9% 16.1% 25.1% Mixture 3.70% 5.53% 8.79%
kNN-Embed 25.8% 374% 52.5% kNN-Embed 12.7% 18.8% 28.3% kNN-Embed 4.13% 6.21% 9.77%

Experiments comparing candidate generation recall with a single embedding, vs mixture of embeddings, vs smoothed mixtures
(KNN-Embed). Higher recall is better.
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Summary: graph embedding in candidate generation

Plays nice with ANN based candidate generation.
Multiple querying, and more sophisticated techniques,
allow us increase diversity in retrieved candidates.
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Thanks!

Any questions?

Come chat with us about our KDD 2022 Applied Data Science Paper!

Paper: TwHIN: Embedding the Twitter Heterogeneous Information Network for Personalized Recommendation
Poster Session: Monday, August 15, 7:00 pm to 8:30 pm.

Oral: Thursday, August 18, 10:00 AM-12:00 PM (~10:50 AM), Room 3 (Graph Learning & Social Network).
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