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Abstract—Active learning exploits inherent structures in the
unlabeled data to minimize the number of labels required to
train an accurate model. It enables effective machine learning in
applications with high labeling cost, such as document classifica-
tion and drug response prediction. We investigate active learning
on heterogeneous information networks, with the objective of ob-
taining accurate node classifications while minimizing the number
of labeled nodes. Our proposed algorithm harnesses a multi-
armed bandit (MAB) algorithm to determine network structures
that identify the most important nodes to the classification task,
accounting for node types and without assuming label assor-
tativity. Evaluations on real-world network classification tasks
demonstrate that our algorithm outperforms existing methods
independent of the underlying classification model.

I. INTRODUCTION

As a collection of entities interconnected by links, a net-
work aptly describes many systems with data dependencies,
e.g. the Internet, academic collaborations, gene regulations.
Information networks use the network construct to organize
information, with links denoting channels for information
exchange. We represent information networks as graphs with
nodes representing entities and edges representing links be-
tween entities. One common task performed over information
networks is classifying nodes by a function learned from
existing node labels, e.g., classifying proteins, which form
networks via interactions, by their biological functions.

Active learning addresses the label scarcity problem in
classification tasks with high labeling cost but abundant unla-
beled data. Instead of passively learning from a given set of
labeled examples, the active learner examines unlabeled data
and selectively queries for the labels of the most informative
examples. Networks, with their rich structures, present an
excellent opportunity for such studies. Due to the ubiquity
of information networks in many scientific disciplines, active
learning on information networks has the potential to drive the
direction of future scientific research under the emergent con-
cept of data-driven science. In the protein function example,
the important proteins selected by the active learner can serve
as guidance on the subject of new experimental studies.

Active learning on information networks requires many
special considerations not applicable in a data independent
setting (i.i.d,). Strategies that are effective for i.i.d., such as
uncertainty sampling, fall short for networks where nodes
are interdependent. Another major challenge is identifying the
connection pattern between nodes in the same class, as many

network classification tasks do not follow the assortativity
assumption that nodes in the same class are more connected.

Previous studies on network active learning typically focus
on networks containing a single type of nodes [2], [13].
In these homogeneous networks, strong assumptions about
network structures are embedded in the way the links are
constructed, limiting the range of analyses that can be per-
formed. Heterogeneous information networks (HIN), which
contain multiple types of nodes, enrich prior methods with
relation semantics between the different types [18]. The HIN
setting allows us to explore the relations that are pertinent to a
given classification task, which is advantageous when the con-
nectivity pattern between nodes belonging to different classes
is unknown. Our algorithm does not assume assortativity nor
dependency on the classification model, unlike existing work
such as [21].

We propose MABAL (Multi-Armed Bandit for Active
Learning), an adaptive active learning algorithm on HINs
inspired by the multi-armed bandit problem. To ensure la-
bel coverage, we consider the batch mode setting in which
multiples nodes are queried for labels at each iteration. The
optimal sequence of query batches lies in an intractably
large search space [5]. MABAL employs a combinatorial
MAB (CMAB) algorithm to construct query batches based
on the recommendations of simple heuristic strategies created
from centrality rankings [4]. Each simple strategy represents
a hypothesis about the network structure and the semantic
relations that make a node an informative query, and MAB
is used to handle the tradeoff between the exploration of all
strategies and the exploitation of the current best strategies, in
linear time w.r.t. the unlabeled data size, the batch size, and
the number of simple strategies.

We conduct empirical evaluations of MABAL on multiple
real world information networks, on multiple classification
tasks over the same network, and with different classification
models. While each of the heuristic and literature baselines
succeeds only in limited capacities, MABAL consistently
achieves high classification accuracy using fewer labels than
baselines in all tasks and settings tested.

II. PRELIMINARIES

We represent an information network as a graph G =
(V,E), where V is the set of nodes corresponding to the
entities in the network and F = {e;; = (v;,v;) | vs,v; € V'}
is the set of links between these entities. In a heterogeneous



information network, each node v € V is mapped onto a
specific type t € T via7 : V — T. Let V; C V denote
the set of nodes with type t. These subsets partition V, i.e.,
VinVy =0Vt#t eVand J, e Vi =V.

Collective classification refers to the task of inferring the
class label of all nodes based on the labels provided for a
subset [15]. Let ) denote the set of class labels. Given the
observations £ = {(v,y,) | v € V,y, € Y}, our objective
is to train a classifier f* to approximate the hidden objective
f:V — ) that generated the node labels.

Graph Centrality Measures. Graph centrality measures
quantify the importance of nodes in a network. For a node
v, its rank in V under C is defined as rankc)y(v) =
> wey I(v <c '), ie., the number of nodes with centrality
greater than that of v. In other words, the most important nodes
based on C' have the lowest rankcy values. In this work, we
consider the following commonly used centrality measures:
degree, closeness, betweenness, PageRank, eigenvector and
Katz. We refer interested readers to [3] for an in-depth
discussion on centrality measures.

Batch Mode Active Learning. Active learning can be con-
ducted in many different modes based on the constraints of the
specific application [16]. In this work we focus on batch mode
learning in which the learner starts with a set of unlabeled
instance, i/ (4 C V in HINs), and issues queries, Q C U,
to the oracle O, such as a human annotator. In this study,
we assume that O provides for each query ¢ a single label
yq € Y UD (0 when the label is not available) and is stable,
i.e., it always provides the same label for ¢ whenever queried,
which implies zero utility in re-querying the same instance.
Batch mode active learning is parameterized by the budget
B, the upper bound on the total number of queries, and the
batch size b, the number of queries to issue at each iteration
over [B/b] iterations [16]. With the labels received from O,
the learner updates U = U \ Q, L = L U Q and then its
strategy for selecting future queries based on £. Batch mode
allows the learner to better adapt to the classification task from
incremental changes in the observed label distribution. We
assume uniform labeling cost over all instances in P. Works
such as [12], [17], [20] address queries with varying costs.
Multi-armed Bandit. The multi-armed bandit (MAB) prob-
lem models the exploration v. exploitation tradeoff in se-
quential allocation tasks [9]. At each iteration ¢, a player
makes a play p; by pulling one of K arms on a bandit
to receive a reward r(p;). The objective is to maximize the
cumulative reward R = Z?:l r(p:) earned over T' rounds.
This is often modeled as minimizing a player’s regret, the
difference between R and RPTT achieved by the optimal
strategy. Each arm has a reward distribution, modeled as a
random variable X;. y; = E[X] is unknown to the player, who
must make decisions based on empirical rewards from past
actions. Let ji}. be the player’s expectation of reward from arm
k in round t. The player can either choose to exploit existing
knowledge about the payoffs by playing argmax;_ry . x3 s,
or to explore arms with high uncertainties. In combinatorial
multi-armed bandit (CMAB), the player at each round plays

multiple arms, or a super arm S € 2151 and receives feedback
for S. We adopt this extension of the classic MAB problem
for modeling query batches containing multiple nodes. In this
work we make use of the algorithm proposed in [4], which
assumes semi-bandit feedback, i.e., a reward is observed for
individual arms in S.

III. THE ALGORITHM

We introduce MABAL, our proposed active learning algo-
rithm on HINs. The objective of MABAL is to find

Q* = argmax 1 Z 1{y, = fo(v)} (1)
oers) U\ Q| s
where y, is the actual label for v, fo(v) is the label predicted
by the classifier trained on Q, and Pp is the powerset up
to size B. MABAL adapts an existing CMAB algorithm,
CUCB [4], to combine simple centrality-based strategies
known as primary candidate selections (PCSs). CUCB esti-
mates expected rewards based on the empirical rewards and
the number of times an arm is explored. It boosts the reward
expectations for under-explored arms to avoid dismissing a
potentially optimal strategy without sufficient evidence.

While reminiscent of the query by committee (QBC) ap-
proach in active learning, where disagreement among an
ensemble of hypotheses is used for query selection, MABAL
significantly differs from QBC in that the PCSs do not propose
any classification of the nodes, only an ordering on their
importance in learning a given task. Instead of considering
the label disagreement among experts, MABAL considers
the ranking of the nodes as votes, which are then weighted
by the rewards of the voters to create the query set. The
only computation cost at each iteration is retraining a single
model (as opposed to retraining a model for each hypothesis
in QBC) since the node rankings can be precomputed in order
to minimize delay between iterations.

A primary candidate selector (PCS), )\tc is constructed from
the ordering induced on V; by the centrality measure C. We
denote the unlabeled set for type ¢ as Uy = U N V;. When
queried in batch mode with batch size b, A\’ will return QN =
{v|v € Uy, rankcyy, (v) < b}, ie., the top b unlabeled nodes
of type ¢ with the highest centrality C. Note that \{'s with the
same ¢ share the same candidate pool I/; but prioritizes nodes
in the pool differently for querying. C, the set of centrality
measures used in MABAL, can be any arbitrary combination
of existing or novel centrality measures.

Let A be the set of PCSs in MABAL. To account for
the possibility that none of the centrality measures serve as
adequate active learning strategies, we add to A Random
constructed from a random node ordering equivalent to a
passive learner. Including Random in A also serves as a
mechanism to regulate the active learner from overfitting to the
centrality-based strategies. This prevents MABAL from doing
worse than the passive learner when none of the centrality-
based strategies prove to be effective.



A. Correspondence between AL and MAB

We define the utility of a query ¢ given the labeled set L
as: u(q|L) = R(fruq) — R(fr), where fx is the classifier
trained on the observations X, and R(fx) = > oy Hyo =
fx()}/|V] is the classification accuracy of fx on V. The
utility of £ is simply u(£) = R(f.). We can rewrite (1) as
L£OPT — argmax u(L) )
LeEPp(V)
Suppose that u(g|L£) is obtainable after ¢ is labeled. This
establishes a correspondence between the objectives of AL
and MAB as follows. Each arm in the MAB corresponds to a
A € A. In the fully sequential setting, i.e., b =1, some A\ € A
is picked to issue the query ¢; at each iteration ¢, corresponding
to a play p; in MAB. The label budget B corresponds to 7', the
number of rounds played in MAB. After playing the sequence
(q1,--.,qr), we obtain L = {q1,...,qr}. R(f) corresponds
to the cumulative reward R in MAB earned by the sequence
of plays (g1, - . -, qr). Thus, finding the sequence of plays that
maximizes R is equivalent to (2). ([l

The simplest adaptation for b > 1 is to choose a single
A € A and use Q* as the query set (). However, this strategy
can severely reduce L£’s coverage of G and ). A classifier
over G cannot be adequately learned without examples for
some y € ) or major components of G. We propose BATCH,
an algorithm that computes @) by selectively taking advice
from the PCSs based on their expected rewards {f(A)}. In
brief, BATCH combines the advice Q* from \ weighted by
its expected reward fi(A) to form @ in a way that also promotes
diversity. We expound on BATCH in Section III-C.

In establishing the correspondence between AL and MAB,
we assumed knowledge of the utility of query ¢, u(q|L).
However, R(f) cannot be computed without the ground truth
labels for all nodes, which are not available to the learner.
Additionally, we need to define u(Q|L) for the query set @ in
batch mode. While it is tempting to think of u(Q|L) as the sum
of u(g|L) for ¢ € Q, u is not additive due to data dependencies
in a network. Consider a ) made up of two nodes vy, vo
connected by an edge. While v; and v, may have high utility
individually, «(() is not a sum of their utilities due to the
coverage overlap between two adjacent nodes. We propose a
novel network-based expected error reduction measure, V, as
a proxy for u to address these issues. We define V and fi(\),
the empirical mean reward of )\, in Section III-B.

Algorithm 1 shows MABAL, with input information net-
work G, label budget B, batch size b, and the set of PCSs
A. [(X) is the empirical reward for A € A, and T) is the
number of nodes nominated by A that were labeled. In line
8, we use CUCB to compute ji()\), the expected reward of A
used to compute the query set @ by Batch. We query the
oracle O for the labels of nodes in @) and update £, & and
Ts accordingly. To update the empirical rewards of the As,
we retrain the classifier on £ and recompute ji(\) using (6).

B. Entropy Reduction as MAB Reward

In the expected error reduction framework for active learn-
ing, queries are selected to minimize the generalization error

Algorithm 1 MABAL
1: procedure MABAL(G = (V, E), B, b, A)

2: i 0, L+ 0, U~V

3: Ty <0 VAXEA > Num. of queries from A
4: AA) 1 VAEA > Empirical reward for A
5: while ¢ - b < B do

6: b’ = min(b, B —t - b)

7 for all A € A do

8: A = A + /BT

9: Q = Batch(G, b/, A, U, {E(A5)})

10: L+ LUOQ)

11: U+—uU\Q

12: Ty T+ |QNQ*N VAeA

13: Train classifier on £

14: update fi(X) VX € A using (6)

15: i+ i+ 1

16: return £

over U [16]. Strategies in this framework are known to be
computationally expensive, since finding the optimal query
requires retraining on all possible queries. In batch mode, this
becomes combinatorially more expensive.

For a given query ¢, the expected log-loss over U/ with 6
trained on £ U q is

> Plylg) [ DD Polylv)log Pa(ylv) 3)
yey veEU yeY
Since H(Y|v) = =3, cy P(ylv) log(P(y|v)) is the entropy
in the label distribution of v, the above is equivalent to finding
a query that minimizes the expected entropy over U. The
factor for marginalizing g over ) can be dropped since each
query receives a single label from O, i.e., (3) reduces to
> weu H(Y|v). Based on the expected log-loss, we propose a
graph-specific error reduction measure to distinguish queries
by their ability to reduce generalization errors. At iteration
1, let 6; be the model trained on £, which includes labels
received from the oracle up to i. We define V;(g), the local
error reduction due to query ¢ at time ¢ as
vl(q) = Z H9i71<y|?]) — Hy, (y‘v) “4)
vEN(q)
where N(q) are the neighbors of ¢. For a query set (), we
have
ViQ) = Y Ho_ ,(Yv) = Hy,(Y]0) (5)
vEN(Q)

where N(Q) = U,cq N(9). Vi(Q) # >, cq Vilg) when
there are overlaps in the neighborhoods of nodes in ). We
use (4) to approximate u(q|L), the reward for the query g,
and (5) to approximate u(Q|L), the reward for the query
set (). The reward of playing A at time ¢ is thus defined as

Vi(A\) = exp (‘vvii((Q‘;))‘ - 1). To avoid a large reduction in a
single round from biasing the algorithm towards a particular A
for the remainder of the query budget, we normalize V;(Q™)
by |V;(V)|, the absolute value of total entropy reduction
incurred in the ith iteration. We use the absolute value to avoid
a false positive reward signal as an artifact of global entropy
increase. We transform the ratio via e(*~1) so the reward for
any ) is always positive and in the [0, 1] range. The empirical
reward mean for A\ at time ¢ can be computed as

(6)



C. Query Batch Selection

Algorithm 2 BATCH
1: procedure BATCH(G, b, A, U, {zi(\)})

2 Q + U
AEA .
3 sl by ViET
4 ) e sen  HON -5 VA€ A
5: for all ¢ € Q™ do
6:

Bg) < X ') -oa(g)
XeA(q)

7: S = sortdesc(Q", {(q)})
8: return S[: b]

Algorithm 2 shows BATCH, the subroutine in MABAL for
computing the optimal query batch given the expected rewards
of the PCSs. As an optimal query set should yield good
coverage both in terms of the network and the classes in ),
BATCH adjusts the expected rewards of the primary learners
to account for these two factors via type bias correction
st and label diversity H(Y|)\). Based on the adjusted PCS
expectations, BATCH computes the expected reward of each
query node as the sum of votes weighted by the rewards of
the PCSs and selects the top b nodes with the highest votes
as the query batch.

Expected Query Reward. The objective of Batch is to find

a query set QOFT of size b that yields the highest reward
expectation, i.e.,
QOFT = argmax E[u(Q|L)] @)
QEPy(U)

Since the exact value of the true maximum reward is not
computable, we use (5) to search for QY. Computing
QOPT then boils down to finding a query set resulting in
the largest entropy reduction in its neighborhood (dependent
on the underlying classification model). To be classification-
model-agnostic, BATCH approximates expected entropy re-
duction via the expected rewards for the PCSs, which are
functions of observed entropy reductions. For each ¢ € Q* =
Usea @, let A(q) be the set of PCSs that selected g as a
candidate. The expected reward of ¢ under weighted Borda
count is [i(q) = > _\ep(q) MA) (b — rankga(q)). Although
C(v) € [0,1] Yv € V,C € C, the ranges of centrality
measures can differ greatly. To counter any negative effects of
this artifact, we use the Borda count, a positional voting system
that allows for a fair comparison of the PCSs irrespective of
their ranges [6]. We define the expected reward of () as a
function of fi(\) as
I

@=>_ > a-al ®)
g€EQ XeA(q)

which assumes additivity of query rewards, namely, if a node
is in the neighborhood of multiple queries, the effects of all
queries on its expected entropy reduction are additive. This
assumption allows us to derive a fast greedy approximation of
(7), which proves to be effective in empirical evaluations.

Type Bias Correction. PCSs of type ¢; are more likely to
produce overlapping query sets than PCSs of type t; when
[Vi,| < |V4,|. In this scenario, a type ¢; node will on average
receive more votes than a type ¢ node simply because type t;
PCSs have a much smaller candidate pool. We correct for type

bias by discounting nodes with type ¢t by s; = 1 — W
where VtLﬂM\ is the probability that a node is included in
a size b random sample. We add 1 to the denominator for
smoothness.

Label Diversity. We enforce label coverage in the query set
by promoting PCSs that have suggested queries with diverse
labels. Let £* be the set of labeled nodes nominated by
\. Label diversity of X is the entropy in £, H(Y|\) =
=D yey P(y|£*) log P(y|£*), highest when £* contains an
equal number of nodes with each label. This scheme is
preferable to distance based coverage enforcement since it
does not assume assortativity. Without assortativity, nodes with
dissimilar labels are not necessarily far apart, which implies
requiring a minimum distance between queries does not lead to
guaranteed coverage. Furthermore, H()|\) is much cheaper
to compute than a set with a minimum distance.

IV. EMPIRICAL EVALUATION

We evaluate MABAL on three classification tasks over
two real world datasets against simple heuristic and literature
active learning baselines. To demonstrate that MABAL is not
dependent on any particular collective classification method,
we measure its gain on two different network classification
models, RankClass [11] (classification on HINs) and Label
Propagation [23] (handles all nodes equally). Both produce
probability distributions for label predictions, compatible with
our entropy reduction framework. Note that centrality values
only need to be computed once for each network and can be
shared across classification tasks.

A. Experiment Setup

Datasets. We evaluate our algorithm on HINSs constructed
from DBLP', a bibliographic database of computer science
publications with 14K papers, 20 conferences, 14K authors
and 9K terms, with a total of 171K links, and the MovieLens
database consisting of 3.4K movies, 15K crewmen, 2K users,
2.7K tags, and 42 origins, with a total of 435K links [10]. The
DBLP HIN contains node types author, paper; venue, and term,
connected via three relations: (paper, author), (paper, venue),
(paper, term). The MovieLens HIN contains nodes of type
movie, crew, origin, tag, user, with relations (movie, crew),
(movie, origin), (movie, tag), and (user, movie).

Baselines. We compare against the following baselines: Ran-
dom: b nodes are randomly selected from U{. Single cen-
trality: nodes in V are queried in descending order by
a single centrality measure (degree, PageRank, eigenvector,
Katz, betweenness, closeness). ALFNET [2]: a cluster-based
active learning algorithm on homogeneous networks with node
features. MI [13]: an active learning algorithm on homoge-
neous networks. HINAL [21]: an active learning algorithm on
heterogeneous networks, which first performs clustering using
metapaths and then selects queries within each cluster based
on uncertainty sampling.

Thttp://dblp.uni-trier.de/
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Fig. 1: (a)-(f) Accuracy v. number of labels for the AL strategies and the best/worst single centrality strategies; (g) MABAL performance on DBLP by batch size.

Tasks. For the DBLP network, we classify author, paper, and
venue nodes into four research area: {Data Mining, Database,
Machine Learning, Artificial Intelligence}, with ground truth
labels obtained in the same fashion as in [11]. We consider
two classification tasks over the MovieLens network: 1) genre
classification of movies and actors, 2) domestic vs. foreign
classification for movies and actors. The network in our experi-
ments contains 2:1 domestic vs. foreign films and three genres:
{Action, Romance, Thriller}, with each node belonging to a
single genre to satisfy the single label condition in MABAL.
Setup. For fairness of comparison, we perform classification
using the same models, RankClass and Label Propagation, on
all active learning strategies in the experiments. For ALFNET
and MI, which are designed for homogeneous networks,
we use the same network topology for input to avoid loss
in structural information due to any projection. ALFNET is
provided the node type information via node feature vectors.

B. Results

Figure 1 shows the classification accuracy achieved by the
number of input labels in each AL algorithm for the three
classification tasks. For readability, we include only the best
and worse centrality-based strategies to provide reference on
the range of performance for MABAL. Note that the centrality
baselines are not exactly the primary learners used in MA-
BAL, since each learner only contains a single type of nodes.
Due to this fact, MABAL may not fully converge to the best
centrality baseline for some tasks, as is the case in Figure 1(d).
Note that MABAL achieves competitive performance with
the best single centrality baseline even if the worst centrality
underperforms Random, as is the case in Figure 1(a), (c), and
(d). On the other hand, it also leads to MABAL outperforming
all centrality baselines in tasks that contains one node type that
is much more informative than the others, as in Figure 1(c).

1) No Consistently Best Baseline: The literature and heuris-
tic baselines alternate in being competitive with MABAL for
the four experiment setups. ALFNET and MI are significantly
outpaced by MABAL due to their inability to properly handle
relation semantics in HINs. HINAL, the only baseline designed

for HINs, achieves competitive performance with MABAL on
the DBLP dataset, but we were unable to run it on the other
tasks. Figurel(e) shows that there is not a single best centrality
measure for all tasks, although betweenness and PageRank
tend to outperform the others in most cases. Betweenness and
closeness, unlike the other centralities, scale super-linearly
with the number of nodes. On DBLP and IMDB, they are
two orders of magnitudes more time consuming to compute
than the others. Thus, it is worthwhile to compute the other
centralities and to use MABAL to detect when betweenness
fails for a given task. Additionally, informativeness of node
types is much more ad hoc and difficult to determine a priori.
Figure 1(c) shows that MABAL is able to automatically take
advantage of informative node types when applicable.

2) Effect of Batch Size: As seen in Figure 1(g), batch mode
with b > 1 provides significant gain over fully sequential
learning, i.e., b = 1, because it avoids being pigeonholed into
a subgraph and losing coverage. While a smaller batch size
leads to faster convergence to A°F7 it also requires more
frequent retraining. The choice for batch size thus involves
consideration for the tradeoff between label cost and the cost
of model training.

V. RELATED WORK

One important type of analyses on networks is collective
classification, which accounts for data dependencies when
classifying objects in a network [15]. There are two main
approaches to collective classification: (1) utilizing local con-
ditional classifiers and (2) viewing it as a global objective
optimization problem. In our work, we employ two meth-
ods, Label Propagation [23], from the second category, and
RankClass [11], a hybrid.

The expected error reduction framework we use was first
proposed for text classification [14]. It was then adapted to
graphs [24]. However, their formulation relies on the assump-
tion that nodes with the same labels are in close proximity to
each other, a limitation excluded from our framework.

Previous works on network active learning without the
assortativity assumption do not have a mechanism to make use



of the node type information in HINs [13], [19]. Additionally,
[19] requires a pairwise similarity matrix as input, which may
not be available for some problem settings, such as HINs
where nodes of different types are not comparable. [13] runs
in exponential time for some settings, while our algorithm runs
in polynomial time. The mutual information query selection
criterion in [13] is similar in spirit to our centrality-based
primary strategies. The network active learning framework
presented in [2] employs both a local classifier based on
node attributes and a collective classifier to account for data
dependencies. It relies on clustering on node attributes to avoid
sampling bias, which is ineffective for spares node attributes.
In comparison, we avoid bias by directly using the observed
label distributions in the primary strategies.

To the best of our knowledge, [21] is the only existing work
on active learning on HINs. In their study, a combination of
clustering using metapaths and uncertainty sampling is used
for query selection. We use an expected error reduction scheme
instead of clustering in our work because we have found that
computing clusters that correlate well with class labels in an
HIN is highly sensitive to the relations considered. Instead
of depending on user guidance in the form of metapaths for
performance, we provide to the users information about the
network structures that are crucial to their task.

Active search is a class of problems closely related to AL,
where the goal is to discover, under a query budget, as many
instances of a given class as possible for binary classification
[8]. This is applied to graphs in [22], solving a binary version
of our problem. Extending this to handle > 2 classes is
nontrivial since the algorithm needs to coordinate among a
set of binary learners competing for the same query budget.

As a resource allocation model, multi-armed bandit lends
itself naturally to the active learning problem. Prior works
have independently drawn analogies between active learning
and multi-armed bandit [1], [7]. They explore fully sequential
learning, i.e., a single query is made at every iteration. As
seen in our work, the correspondence between AL and MAB
becomes much more complex in batch mode learning. To this
end, we transform the batch mode active learning problem in
order to apply a combinatorial MAB algorithm [4].

VI. CONCLUSION

We presented a novel and effective active learning algorithm
for heterogeneous information networks. We focused on batch
mode learning, which we have shown to be more effective
on information networks than fully sequential learning. By
establishing a correspondence between batch mode active
learning on information networks and combinatorial multi-
armed bandit, we proposed an expected error reduction based
algorithm that combines simple strategies called primary
learners to form query sets. Our algorithm employs a novel
error expectation measure on networks that is highly adaptable
to different classification tasks. Results for classification tasks
on real world HINs demonstrate that our algorithm outper-
forms existing methods when applied to both homogeneous
and heterogeneous network classification models.
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