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Abstract—In this paper, the performance of Higuichi’s algo-
rithm for calculation of fractal dimension, Hurst exponents, and
Shannon Entropy as discriminants for the detection of epileptic
seizures in EEG signals are assessed. The proposed methods were
applied to intracranial EEG recordings from epilepsy patients
during the seizure free interval from within and from outside the
seizure generating area as well as intracranial EEG recordings
during epileptic seizures. Analysis was conducted using statistical
hypothesis testing to determine the validity of the proposed
seizure-identifying techniques.

I. INTRODUCTION

The National Institutes of Health defines epilepsy as a brain
disorder in which a person has repeated seizures (convulsions)
over time. These seizures are further defined as episodes of
disturbed brain activity that cause changes in attention or
behavior. Standard diagnostic of epilepsy involves the manual
analysis of Electroencephalogram (EEG) recordings. With
inspection and identification of changes in the normal pattern
of the brain’s electrical activity, seizures can be identified.

The common diagnostic of epilepsy through visual scanning
of EEG recordings for disturbances and spikes indicating
seizures is a time-consuming process. Often EEG recordings
may be quite long and visual diagnosis is very subjective.

Fractal dimension are considered an important parameter
and feature of EEG signals and biosignals in general. These
features have been studied on various EEG time signals and
have often been applied to the study of epilepsy on EEG [1,2].
Intimately related to fractal dimensions, the Hurst exponent
has been used as feature extraction of epileptic EEG [3]. The
concept of entropy has been been used in the study of the
complexity and characteristics of seizure onset [4].

These three metrics have been proposed to automate and
standardize the process of seizure identification within EEG
signals. Through the reduction short-length EEG time series
into a single descriptive numerical value through means of
Higuchi’s algorithm for fractal dimensions, approximations
of the generalized Hurst Exponent, and calculation of Shan-
non Entropy, distinctions between seizure-free intervals and
seizure-containing intervals can theoretically be used to detect
seizures within time series. For each method proposed, the
polarization of the feature between seizure-containing and
seizure free is assessed providing a metric for the feature as
a discriminant.

II. DATA SETS AND ACQUISITION

EEG recordings for analysis were obtained from the De-
partment of Epileptology at the University of Bonn [5]. Three
data sets were used in this study each containing 100 23.6-
sec EEG segments. The data sets originated from an EEG
archive of pre-surgical diagnosis of epilepsy. Segments in Set
A consisted of data from five patients and were obtained
intracranially from the hippocampal formation of the brain.
Segments in Set B consisted of data from five patients and
were obtained from the hippocampal formation in the opposite
hemisphere of the brain; the portion identified post resection
as the epileptogenic zone. Both sets A and B consisted of
data depicting brain activity during seizure-free intervals. Set
C consisted of segments recorded intracranially of exclusively
seizure activity.

The EEG signals were recorded with the same 128- channel
amplifier system, after analog to digital conversion of the
signal, the data was written to disk at a sampling rate of 173.61
Hz. The bandwidth of the acquisition system was 0.5 Hz to
85 Hz.

III. METHODS OF ANALYSIS

Seizure Detection Metrics: Several measures for the detec-
tion of seizures within EEG time series have been proposed
and will be discussed in this section. The results will be
discussed in the next section.

A. Denoising

As information of interest lay below 40 Hz, and the time
series possessed the spectral bandwidth of the acquisition
system, a fifth-order Butterworth low pass filter was applied to
each sample to denoise the digital signal [6,10]. The resulting
time series possessed a bandwidth of 0.5 Hz to 40 Hz.

B. Fractal Dimension

The idea of fractals was first introduced by Benoit Man-
delbrot in 1970s. A fractal is a geometric shape with the
property of self-similarity. An object with D-dimensions when
reduced by a factor of 1

x in each of its spatal directions requires
N = xD self-similar copies to cover the original object. An
example is the euclidean forms of a line, square, and cube
with one, two, and three dimension respectively. With x = 2,
a line needs 21 lines of 1

2 the original size to fill the original
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Fig. 1. Sample Denoised Time Series

line, for a square 22 squares with each side half the length of
the original square, and for the cube 23 cubes each with sides
half the length of the side of the original cube. The dimension
D of a shape is expressed as

D = limx→+0
ln(N(x))
ln(x) .

Thus the fractal dimension is calculated as the tangent of ln(x)
vs ln(N).

Fractal dimensions can be used to measure the amount of
chaos in a time series and thus provide a possible metric for the
detection of certain disturbances from the norm within brain
activity. To calculate the fractal dimension Df of each time
series segment, Higuchi’s algorithm was used [7,8]. Higuchi’s
algorithm is specifically designed for approximating the fractal
dimension of time series data. Higuchi’s algorithm creates k
new time series. If the original time series takes the form

x = {x(0), x(1), . . . x(N)}

Each constructed time series possesses k points and takes the
form

ym = {x(m), x(m+ k), x(m+ 2k), . . . x(bN−mk c)}.

For each time series constructed, the average length L(k) of
each curve is computed and plotted against its corresponding
k value on a log-log scale. The length, Lm(k) of each curve
Xk

m is represented by

Lm(k) = 1
k |(

∑M
i=1 |X(m+ i∗k)−X(m+(i−1)∗k)|)|N−1M∗k

As Lm(k) represents the sum of absolute values of difference
in ordinates of pair of points distant k after normalization, it is
not truly the length. The length of curve for the time interval
k, is the mean of the k values Lm(k) for m = 1, 2, . . . k. The
slope of the resultant linear regression provides an estimate
of the fractal dimension. As Higuchi’s algorithm requires the
selection of a kmax, this was selected by plotting Df vs kmax

and identifying the kmax at which the Df plateau [9]. A kmax

value of 30 was selected. Fractal dimensions for each segment
in sets A, B, and C were computed.

C. Generalized Hurst Exponent

The Hurst exponent is a numerical estimate of the pre-
dictability of a time series [11-13]. It is defined as the
relative tendency of a time series to either regress to a longer
term mean value or ‘cluster’ in a direction. The underlying
assumption of the dataset is that the time series approximates
a fractal – as such the hurst exponent is an estimate. Values
of the Hurst exponent range from 0 to 1. A hurst exponent
h ∈ [0, 0.5) indicates anti-persistent data. An increase is
likely to be followed by a decrease and a decrease likely to
be followed by an increase. (i.e. x[t − 1] > x[t] predicts
x[t] < x[t + 1]). This switching from from increasing to
decreasing and vice versa is likely to persist in the time series
over time with the strength increasing as h→ 0. h ∈ (0.5, 1]
indicates persistence within the time series. Such an h value
implies that increasing tendencies will probably persist and
decreasing tendencies will probably persist (i.e. x[t−1] < x[t]
predicts x[t] < x[t+1]). The strength of this trend increases
as h → 1. h = 0.5 implies that there is likely no correlation
between an element and a future element.

As the Hurst exponent can classify time series based on
their predictability and chaos levels, it may be a useful tool in
identifying deviations from the normal patters of brain activity
during interruptions of seizures [14]. The Hurst exponent was
calculated for each segment within data sets A, B, C.

D. Shannon Entropy

In information theory and communication, entropy is con-
sidered the amount of uncertainty within a random variable. If
the entropy is 0, that indicates that the system is predictable.
Due to the chaotic nature of seizure in relation to non-seizure
activity, the Shannon entropy of time series was proposed as
a metric of seizure detection. In the following expressions,
s is the signal and si the coefficients of s in an orthonormal
basis. Entropy E is an additive cost function with the following
properties [15,16].

E(0) = 0 and E(s) =

n∑
i=0

E(si)

Therefore the nonnormalized Shannon Entropy is

E(si) = s2i log(si)
2

E(s) = −
n∑

i=0

s2i log(si)
2

The Shannon entropy in each segment within data sets A, B,
C were calculated.

IV. RESULTS AND DISCUSSION

For comparisons of the validity of each algorithm as a pos-
sible metric for the detection of seizures, statistical measures
of the values obtained from each algorithm were analyzed
and two-sample Student’s t-test were calculated at the 5%
significance level.
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A. Higuchi’s Algorithm for Fractal Dimensions

Higuchi’s algorithm showed promise in differentiating
between EEG segments with seizures and seizure-free EEG
segments. Figure 2 displays a plot of fractal dimension
calculated in seizure free intervals in the hippocampal regions
of the brain. There seems to be no differentiation between
the fractal dimension from epileptogenic samples in Set B
and those of the opposite hemisphere in Set A. As seen in
Figure 3 and Figure 4, in differentiating between seizure
free intervals and seizure-containing intervals, the fractal
dimension of the time series for both Set A and Set B showed
delineation with seizure-free intervals possessing a lower
fractal dimension than intervals containing seizures of Set
C. Student’s two-sample t-test were run between the fractal
dimension of Set A and Set B with the null hypothesis of both
samples coming from the same population, and the result was
a failure to reject the hypothesis. In the case of two-sample
independent t-test run with both Set A and Set C as well
as Set B and Set C, the null hypothesis was rejected at the
5% significance level. There did not exist sufficient statistical
evidence to suggest that the fractal dimensions of seizure-free
intervals could not be distinguished from seizure-containing
intervals. Statistical data can be seen below.

Fractal Dimension
Set Size Mean Std. Dev.
A 100 1.4893 0.0821
B 100 1.4915 0.0978
C 100 1.6567 0.1226

B. Generalized Hurst Exponent

The generalized Hurst exponent did not provide a clear dif-
ferentiation between seizure-free segments in EEG recordings
from seizure-containing segments in visualization. Visualiza-
tion shows no significant differences among the distribution
of generalized Hurst Exponents for seizure-free time series
and seizure-containing time series. Observing statistical data,
the generalized Hurst exponent between the epileptogenic
region and the non epileptogenic regions possessed means
of approximately equal value. In addition these values were
of higher than 0.5 indicating a stronger persistence. The
generalized Hurst Exponent of Set C was lower than that of
Sets A and B approaching 0.5 indicating a weaker trend in
persistence and more uncertainty. Student’s two-sample t-test
were run between the generalized Hurst Exponents of Set A
and Set B with the null hypothesis of both samples coming
from the same population, and the result was a rejection of
the hypothesis. In the case of two-sample independent t-test
run with both Set A and Set C as well as Set B and Set C,
the null hypothesis was rejected at the 5% significance level.
There did not exist sufficient statistical evidence to suggest
that the generalized Hurst Exponent of seizure-free intervals
could not be distinguished from seizure-containing intervals.
As |0.5− µC | < |0.5− µA| and |0.5− µC | < |0.5− µB |,
seizure-containing time series are likely to be more uncorre-

lated than seizure-free time series. Statistical data can be seen
below.

Generalized Hurst Exponent
Set Size Mean Std. Dev.
A 100 0.7119 0.0733
B 100 0.7328 0.0607
C 100 0.6573 0.1027

C. Shannon Entropy

The Shannon Entropy of the time series provided a
clear delineation between seizure-free segments and seizure-
containing segments both visually and through statistical test-
ing. Visualization of the Shannon Entropy of Sets A and B
does not provide much delineation between the recordings
obtained in seizure-free intervals. Yet, as seen in Figure
8, the visualization of the entropies of Sets A and B with
respect to the entropy of Set C, showed a distinct trend of the
Shannon Entropy of seizure-containing segments to possess a
higher magnitude of entropy than seizure-free intervals. This is
demonstrated by the more negative values of the entropies of
Set C in relation to Sets A and B; this is seen in Figures 9 and
10. Student’s two-sample t-test were run between the Shannon
Entropies of Set A and Set B with the null hypothesis stating
both samples were obtained from the same population, and the
result was a failure to reject the null hypothesis. In the case of
two-sample independent t-test run with both Set A and Set C
as well as Set B and Set C, the null hypothesis was rejected
at the 5% significance level. There did not exist sufficient
statistical evidence to suggest that the Shannon Entropy of
seizure-free intervals can not be distinguished from seizure-
containing intervals. The mean of the entropy of Set C appears
to be a of a magnitude of approximately 10× that of the
entropies of Sets A and B. In addition the Shannon Entropy of
seizure-free recordings from the recognized epileptogenic zone
on occasion seemed to possess similar qualities to entropies
obtained during seizures.

Shannon Entropy
Set Size Mean Std. Dev.
A 100 −5.0565× 107 5.7227× 107

B 100 −2.3177× 108 9.9224× 108

C 100 −2.7503× 109 2.5398× 109
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Fig. 2. Higuchi’s Algorithm: A vs B
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Fig. 3. Higuchi’s Algorithm: A vs C
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Fig. 4. Higuchi’s Algorithm: B vs C
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Fig. 5. Generalized Hurst Exponent: A vs B
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Fig. 6. Generalized Hurst Exponent: A vs C
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Fig. 7. Generalized Hurst Exponent: B vs C

!"!!#

!"$!#

!"%!#

!"&!#

!"'!#

!"(!#

!")!#

!"*!#

!"+!#

!",!#

$"!!#

!# $!# %!# &!# '!# (!# )!# *!# +!# ,!# $!!#

-
./

.0
12
34
.5

#6
70
89
#.
:;
</

./
9#

=.>?./9#

!"#"$%&'(")*+,$-.*/012#"#.*3".*4*5-*3".*6*

@#

A#

95



Fig. 8. Shannon Entropy: A vs B
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Fig. 9. Shannon Entropy: A vs C
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Fig. 10. Shannon Entropy: B vs C
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V. CONCLUSION

In this paper, three metrics were assessed in their effec-
tiveness in detection of seizure in EEG signals. Of the three
metrics, all three provided statistical differentiation between
seizure-free recording and seizure containing time series.

Shannon entropy provided the strongest differentiation be-
tween seizure-free intervals and seizure containing intervals. In
addition, Shannon Entropy in sporadic cases showed similarity
in values between seizure-containing intervals and seizure-
free intervals found in the verified epileptogenic hippocampal
region. These values were not located in data obtained from
the hippocampal region in the opposite region of the brain.
This could provide a diagnostic for determining and isolating
the epileptogenic zone of individuals with epilepsy.

As this study verified the existence of statistically signifi-
cant differences between certain features of EEG time series
containing seizures to those seizure-free, further study should
attempt to verify this difference on out-of-sample data sets.
Following verification on multiple data sets, machine learning
algorithms such as artificial neural networks, decision trees,
and other classifiers can utilize the three features as attributes
in the detection of seizures within time series.
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