
Agglomerative Clustering of Bagged Data Using Joint Distributions

David Arbour* darbour@cs.umass.edu
James Atwood* jatwood@cs.umass.edu
Ahmed El-Kishky† ahmed-el-kishky@utulsa.edu
David Jensen* jensen@cs.umass.edu
*School of Computer Science, University of Massachusetts Amherst, 140 Governors Dr., Amherst, MA
†Tandy School of Computer Science, University of Tulsa, Rayzor Hall, East 5th Place, Tulsa, OK

Abstract

Current methods for hierarchical clustering
of data either operate on features of the
data or make limiting model assumptions.
We present the hierarchy discovery algorithm
(HDA), a model-based hierarchical clustering
method based on explicit comparison of joint
distributions via Bayesian network learning
for predefined groups of data. HDA works
on both continuous and discrete data and
offers a model-based approach to agglomer-
ative clustering that does not require pre-
specification of the model dependency struc-
ture.

Introduction

Researchers interested in understanding the rela-
tionships among groupings of data frequently use
hierarchical clustering to assess the similarity of these
groups. For example, researchers who are interested
in the citation patterns of the scientific community
may be interested in the influences within particular
venues. A natural question is whether the predictors
of citation are the same across venues. An obvious
approach would be to apply a hierarchical clustering
algorithm. This, however, groups data using the
similarity between features of venues when the intent
is to compare the underlying generative distributions
of venues. While methods for model-based hier-
archical clustering do exist, they require that the
form of the dependency structure be specified a priori.

We present the hierarchy discovery algorithm
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(HDA), a method for hierarchical model-based
clustering that clusters groups of data using the
similarity of their joint distributions without making
assumptions about the dependency structure of the
data. HDA learnins a Bayesian network for each of
a set of predetermined groupings, or partitions, of
a dataset. This analysis allows comparison of the
joint distributions that generate data instances rather
than the specific features of data instances produced
by those distributions. This enables researchers to
enjoy the benefit of model-based clustering without
the need to specify the dependency structure a priori,
something that is often difficult in practice. Further,
there are well-established measures for assessing
the similarity between Bayesian networks, such as
structural Hamming distance or relative entropy.

A distinguishing feature of HDA is that it oper-
ates over partitionings of data rather than individual
data instances. Many large data sets have one or
more such pre-existing partitionings that represent
geographic regions, temporal periods, organizations,
or other natural boundaries that divide the data into
subsets. While this heterogeneity may appear to
be an inconvenience, it can be leveraged to perform
efficient clustering through comparison of the learned
joint distributions of the bags.

In this paper, we describe HDA, introduce some
suitable candidate measures for comparing models
and examine their relative strengths and weaknesses.
We then analyze the consistency of HDA in the
construction of the hierarchy with experiments on
synthetic data. Finally, we show the results of
applying the algorithm to the PubMed Open Access
Collection of scientific venues and their associated
papers.
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Hierarchy Learning with Bayesian
Networks

Algorithm 1 Hierarchy Discovery Algorithm

Input: dataset D, initial partitioning P of D

such that
⋃|P |

i=1 p ∈ P = D
S = learn model(p) ∀p ∈ P
while |S| > 1 do

find si, sj such that
dist(si, sj) = min(dist(sx, sy))∀x, y ∈ S
pnew = pi ∪ pj
snew = learn model(pnew)
S = S\{si, sj}

⋃
snew

end while
return S

Learning the Initial Models

Algorithm 1 specifies the hierarchical discovery algo-
rithm. It takes as input the full dataset, D, and an ini-
tial partitioning of the data, P . The initial partition-
ing may be made in any manner, so long as each parti-
tion within the initial partitioning is homogenous, i.e.,
all data associated with the partition are consistent
with a single model. For each partition, p, within the
initial partitioning, we learn a Bayesian network repre-
senting the underlying joint distribution of p. For this
work we used PC, a constraint-based method for learn-
ing Bayesian networks (Spirtes et al., 2000). While
any algorithm for learning complete Bayesian networks
could be used in principle, constraint-based methods
such as PC provide an advantage over search and score
methods by returning the same model every time the
algorithm is applied to data. Search and score-based
methods are unable to provide this guarantee due to
the inherent stochasticity of the search process. These
initial learned models now constitute the set S.

Distance Measures

The algorithm then measures the distance between
each pair of models in S. Any symmetric measure
of distance could be used in principle. For this
paper, we examine the efficacy of three distance
measures between Bayesian networks: structural
Hamming distance, symmetric relative entropy and
proportional loss in Bayesian information crite-
rion. Structural Hamming distance is defined as
the L1 distance between the adjacency matrices of
two graphs (Tsamardinos et al., 2006). By using
structural Hamming distance between two graphs,
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Figure 1. A situation where three models contain the same
dependencies but vary in strength of effect.

the algorithm explicitly compares the conditional
independence structure of two distributions. This
stands in contrast to traditional measures used in
hierarchical clustering which seek to minimize some
aspect of the grouped feature data but do not ex-
plicitly consider the dependency structure of the data
being compared. While structural Hamming distance
provides a principled way for comparing the structure
of joint distributions, it does not take into account
the strength of dependence between variables. This is
problematic in cases where models share dependency
structure but differ in parameterization. Take, for
example, the models shown in Figure 1. While all
three models encode the same dependency structure,
it is clear that graph A is much more similar to graph
C than to B, given the strength of effects. To account
for the strength of effect, we consider both the the
loss in the Bayesian information criterion between
models and their constituent data and the symmetric
relative entropy between two Bayesian networks as
alternative distance measures.

The relative entropy (Koller & Friedman, 2009)
between two Bayesian networks P and Q where P is
consistent with graph G is defined as

D(P ‖ Q) =

−HQ(X )−
∑
i

∑
paG

i

Q(paGi )EQ(Xi|paG
i
)[ln(P (Xi|paGi )]

Where HQ(X ) is the entropy of model Q defined as

HQ(X ) =
∑
i

EQ[−ln(P (Xi|PaQi )]

Relative entropy is known to be asymmetric. We de-
fine a symmetric measure by summing the relative en-
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Figure 2. An example hierarchy. The height of each node
is determined by the absolute value of the BIC for its as-
sociated Bayesian network.

tropy in both directions. Thus our relative entropy-
based distance function is defined as

dist(Q,P) = D(P ‖ Q) + D(Q ‖ P)

The use of relative entropy to compare models re-
quires an assumption that both models are generated
from some member of the exponential family. In cases
where this is not appropriate, structural Hamming
distance and proportional loss in BIC provide more
generally applicable measures.

In addition to structural Hamming distance and
relative entropy, we define a distance measure that
is directly related to the goodness of fit of models
to data. Given two joint distributions, P and Q,
and their associated datasets, DP and DQ, the
proportional difference in BIC is defined as:

BIC (Q,DP )

BIC (Q,DQ)
+

BIC (P,DQ)

BIC (P,DP )

Where BIC (P,DP ) is the BIC of the joint distribution
of P with regard to dataset DP This measure is the
relative loss in goodness-of-fit of each dataset when ap-
plied to the other model. Thus, the metric represents
a relative closeness in terms of how exchangeable one
model is for the other.

Constructing the Tree

Once the distance has been measured between all
models, the pair of models si and sj with the mini-
mum distance are chosen. The data associated with si

and sj are then pooled and a new Bayesian network,
snew, is learned from the pooled data. We set snew
as the parent of si and sj and define the distance
between each child and its parent to be the difference
in Bayesian information criterion between the models.
The pair si and sj are then removed from S and snew
is added. This process is repeated until there is only
one element remaining in S, which is the root node
of the hierarchy. Figure 2 is an example of a learned
hierarchy.

There is a clear interpretation of each level of
the hierarchy. Specifically, if we assume that we have
correctly learned the Bayesian networks, for any two
levels i and j such that height(j) < height(i):∑

p∈Pi

lnL(θp|xp) ≤
∑
q∈Pj

lnL(θq|xq)

This follows from our initial assumption of homoge-
nous distributions in the initial partitions. This gives
rise to an intuitive intrepretation of the tree. As the
tree is traversed from the leaves upward, the cost as-
sociated with increased generality is reflected with the
decreasing likelihood of the models learned. Addition-
ally, if a group of models are very similar, then there
will be a small distance between members.

Experiments

Synthetic Data

We compared HDA to feature-based clustering and
model-based clustering using a simple marginal model
of the data. For the feature-based model, we define
the distance function to be:

dist(Q,P) =
1

|P||Q|
∑
p∈P

∑
q∈Q
|q ∩ p|

which represents the mean correspondence between
feature vectors in two groupings. The marginal
model naively assumes independence between features
and measures distance using symmetric relative
entropy. For this experiment, we first generate k
Bayesian networks at random with m nodes each.
Then, for each model, 500 observations are generated
and randomly split into two groups. Each of the
split groups is then treated as an initial partition.
Hierarchies are then learned on these partitions using
structural Hamming distance, symmetric relative
entropy, marginal symmetric relative entropy, average
vector correspondence, and proportional loss in BIC
as distance measures. We also evaluate the efficacy of
“clustering” by randomly agglomerating node pairs
to establish worse-case performance. We evaluate



Agglomerative Clustering of Bagged Data Using Joint Distributions

!

!

!!

!

!

!

!!

!

!

!

!!

!

!

!

!!

!

!

!

!!

!

!

!

!!

!

50

100

150

200

2 3 4 5 6 7
Number of Networks

Ab
so

lu
te

 V
al

ue
 o

f L
os

s 
in

 B
IC

Structural Hamming Distance

Avg. Correspondence

Marginal Entropy, 
Proportional Loss in BIC

Relative Entropy

Figure 3. Results from the synthetic split-partition exper-
iment on models with three variables. Random agglomer-
ation, not shown, returns an absolute average BIC differ-
ence that is roughly an order of magnitude greater than
the models shown.

!

!

!!

!

!

!

!!

!

!

!

!!

!

!

!

!!

!

!

!

!!

!

!

!

!!

!

90

120

150

180

2 3 4 5 6 7
Number of Networks

Ab
so

lu
te

 V
al

ue
 o

f L
os

s 
in

 B
IC

Avg. Correspondence

Structural 
Hamming Distance

Marginal Entropy, 
Proportional Loss in BIC

Relative Entropy

Figure 4. Results from the synthetic split-partition exper-
iment on models with five variables. Random agglomer-
ation, not shown, returns an absolute average BIC differ-
ence that is roughly an order of magnitude greater than
the models shown.

the performance of the clusterers by determining the
distance between each pairing of nodes that were
drawn from the same model. That distance is defined
to be the average difference in BIC between the
lowest common ancestor of the nodes in the learned
hierarchy and the nodes themselves. More formally, if
two groups m1 and m2 are both drawn from a model
M and we find their lowest common ancestor in the
hierarchy to be a, we define the distance as

1

2
(BIC(a)−BIC(mone) +BIC(a)−BIC(mtwo))

The best performing model is that which minimizes
the sum of tree distances.

The results can be seen in Figures 3 and 4 for models
with three and five variables, respectively. All distance
measures significantly outperform random agglomera-
tion. Relative entropy provides the best performance,
followed by marginal entropy and proportional loss in
BIC. Surprisingly, marginal entropy and proportional
loss in BIC perform nearly identically in each case.
We intend to study this behavior and the relation-
ship between the two measures in the future. In the
three-variable case, structural Hamming distance has
the worst performance, while average correspondence
performs worst in the five-variable case.

The success of relative entropy as a distance measure
can be attributed to its ability to leverage both the full
conditional structure and parameterization of mod-
els. While both marginal entropy and proportional
BIC make use of the model parameterization, they
do not take full advantage of model structure. Con-
versely, structural Hamming distance fully considers
model structure, but completely ignores the parame-
terization.

We hypothesize that the relative increase in the per-
fomance of structural Hamming distance as the num-
ber of variables increases can be explained by a boost
in discriminative power. The number of possible net-
work structures for models with five variables is much
greater than the number possible with three variables.
Accordingly, there is a much higher chance of struc-
tural overlap between models in the three-variable
case. Given that ssuch overlap reduces the discrimina-
tive power of structural Hamming distance, we would
expect it to perform worse in such an environment.

Real World Data

We also evaluated HDA in a more realistic setting by
applying it to the PubMed Open Access Collection,
which indexes medical publications that have been re-
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Figure 5. The learned hierarchy for PubMed Open Access
Collection with split tags using proportional loss in BIC as
a distance measure. Each leaf represents a random 50% of
the venues data.

leased to the public under the Creative Commons li-
cense.

Each data instance represents a single paper and
consists of the following features: number of co-
authors, word count of the title, word count of the
body, maximimum h-index of all co-authors, average
h-index of co-authors, impact factor of the venue
of publication, and impact factor of the institution
of the primary author. The h-indices and impact
factors were derived from the corpus using standard
techniques. The initial partitions were defined by the
venue of publication. We evaluated this dataset with
the same method used for synthetic data. For each
venue, we randomly split the data into two equally
sized groupings. The hierarchy was then learned over
the split venues. Accuracy was defined in terms of
the average loss of BIC between the two split venue
tags and their lowest common ancestor. Figure 6
summarizes the results. Interestingly, both marginal
entropy and proportional BIC outperform relative
entropy. We hypothesize that this is because relative
entropy requires a correct specification of both model
structure and parameters. For a domain with a large
amount of uncertainty in model dependencies, as is
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Figure 6. Average Loss in BIC for each hierarchy built with
different distance functions.

the case with the PubMed data, the performance of
relative entropy suffers.

Related Work

HDA is conceptually very similar to traditional hier-
archical clustering techniques (Ward, 1963). However,
hierarchical clustering algorithms perform the cluster-
ing task by considering the distance between the data
features rather than the data model. While this can
be an effective technique, it requires that the user sup-
ply a distance measure. Constructing such a measure
is challenging, particularly when the data consist of a
variety of variable types and distributions. Further-
more, the underlying meaning and utility of a candi-
date measure is not always clear. For instance, it is
not immediately obvious how one would measure the
distance between two colors. The wavelength of each
could be used, but whether this is a useful notion of
distance is highly dependent on the task at hand.

Model-based clustering techniques address this by
clustering over the likelihood of a set of data given
a model. Unlike unconstrained measures of distance,
likelihood is a consistent measure with uniform inter-
pretation. While there are existing methods for hi-
erarchical model-based clustering (Vaithyanathan &
Dom, 2000), they require that the stucture of a model
be specified a priori. We relax this requirement by
using graphical models, which can represent a much
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broader class of distributions. While there are other
techniques which perform model-based clustering us-
ing Bayesian networks (Thiesson et al., 1998), the clus-
tering is not hierarchical and thus does not consider
the relationship between the models. There has also
been some work on clustering based on Bregman di-
vergence (Banerjee et al., 2005), but the authors do not
consider graphical models. To our knowledge, there is
no existing work on clustering based on the divergence
between graphical models learned from data.

Future Work

In principle, this technique can be applied to any task
where graphical models can be learned from parti-
tioned heterogeneous data. For instance, one could
cluster a set of timeseries by learning a dynamic
Bayesian network from each series and constructing a
hierarchy from their mutual divergence. Images could
be clustered by conditioning a grid-structured condi-
tional random field on each and considering the di-
vergence between the resulting Markov fields. Fur-
thermore, the technique is not limited to propositional
models; relational data sets could be clustered based
on some notion of distance between learned relational
models.

Conclusion

We presented HDA, a method for hierarchical cluster-
ing based on the divergence between joint models of
partitioned data. This algorithm is particularly use-
ful in large, heterogeneous data domains that contain
predefined partitions. We leverage these partitions
to learn joint models which provide a notion of dis-
tance beyond simple comparison of features. Finally,
we demonstrate its effectiveness through synthetic and
real-world comparisons with feature-based techniques.
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